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1. Introduction

We consider identification and estimation in a nonparametric triangular system with a binary en-

dogenous regressor and nonseparable errors. For identification we take a control function approach

utilizing the Dynkin system idea developed in Jun, Pinkse, and Xu (2011, JPX11) and extended in

Kédagni and Mourifié (2014, KM14). We articulate various tradeoffs, including continuity, mono-

tonicity, and differentiability. For estimation, we use the idea of local instruments under smoothness

assumptions, as in e.g. Carneiro and Lee (2009, CL09), Heckman and Vytlacil (1999) but we do not

assume additive separability in latent variables. Our estimator uses nonparametric kernel regression

techniques and its statistical properties are derived using the functional delta method. We establish

that it is n2=7–consistent and has a limiting normal distribution. We apply the method to estimate

the returns on a college education. Unlike existing work, notably CL09 and Carneiro, Heckman, and

Vytlacil (2011, CHV11), we find that returns on a college education are consistently positive. The

returns curves we estimate are moreover inconsistent with the shape restrictions imposed in those

papers.

Most papers on nonparametric triangular models with nonseparable errors focus on nonparamet-

ric identification rather than estimation, especially when there is a discrete endogenous regressor.

Hoderlein and Mammen (2007) consider a nonseparable model with exogenous regressors but with-

out monotonicity. Chesher (2003, CH03) and Imbens and Newey (2009) study nonseparable models

with continuous endogenous regressors under monotonicity. Based on the identification result of e.g.

CH03, Ma and Koenker (2006) and Jun (2009) propose parametric and semiparametric estimation

methods, respectively, but both require that endogenous regressors be continuous. Chesher (2005,

CH05) establishes partial identification of the structural function at a given value in a triangular

system with a discrete endogenous regressor, but CH05 contains little discussion on estimation and

inference. JPX11 reconsider CH05’s result and provide tighter bounds under a weaker rank condition

using an independence assumption on instruments, but also stop short of estimation and inference.

JPX11 and CH05 serve as our starting point. The two papers study the same model, albeit that

JPX11 use a global independence condition of instruments and errors to weaken CH05’s rank con-

dition and to tighten identification bounds. The difference between the two approaches is most pro-

found in the presence of a binary endogenous regressor since CH05, unlike JPX11, does not allow for

a binary endogenous regressor. JPX11 in fact establish conditions under which point identification

obtains in the case of continuous instruments.

http://www.economics.utoronto.ca/public/workingPapers/tecipa-515.pdf
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One of our objectives in this paper is to show how the Dynkin system idea can be used to obtain

point identification in the triangular model with a binary endogenous regressor. Unlike the local in-

strument approach of Heckman and Vytlacil (1999, 2001) and CL09, we show that it is the continuous

variation, rather than the differentiability, of the propensity score that is essential for identification,

albeit that the latter is useful for estimation. A more formal discussion can be found in section 2.

Once we have articulated conditions for identification we turn our attention to nonparametric

estimation. We propose a kernel–based nonparametric estimator, which allows for the full flexibility

of the triangular model with nonseparable errors. We then develop limit results for the proposed

estimator. These results are derived in section 3.

Finally, in section 5 we implement our estimator using the same NLSY–based data set that is used

in CL09 and CHV11 and an index model described in section 4. Our specification is different from

theirs and so are our conclusions. CL09 and CHV11 find that returns to a college education can

be negative whereas we find them to be consistently positive and substantial. Further, the returns

curves that we estimate do not satisfy the additive separability of errors assumption imposed by

CL09 and CHV11, albeit that the specification in CL09 is not nested by ours. Nevertheless, the

shape restrictions in the existing literature appear to be restrictive and should be studied in greater

depth with a larger data set.

2. Identification

JPX11 show that the identified bounds provided in CH05 can be substantially tightened under a

weaker rank condition when instruments are independent of the errors in a two equation triangular

system. In an extreme case with independent and continuous instruments, the structural function

evaluated at particular values of its arguments can even be point–identified. In this section we show

that this general result is in fact closely related to existing results on the identification of treatment

effects (e.g., CL09 and Heckman and Vytlacil (1999, 2001)) and also to the results for continuous

endogenous regressors of CH03.

The approach taken in JPX11 and CH05 is general in that partial identification is discussed under

the setup of a triangular system with discrete endogenous regressors. The source of the weaker rank

condition and the tighter bounds of JPX11 is the independence between instrumental variables and

unobserved errors, which makes it possible to combine multiple values of the instrumental variables

to obtain identified bounds. The idea is best explained when an endogenous regressor is binary,

which is the case we focus on in the current paper.
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Consider the model 8<: y D g.x;u/;

x D �.z; v/;
(1)

where x is a binary regressor, z 2 Sz � Rdz is a vector of observed ‘demographics,’ and y is a

scalar–valued outcome.1 We omit covariates in the identification analysis but they will be introduced

in the estimation section. We permit the errors to enter nonadditively, so g.1;u/� g.0;u/ can vary

with u. Consequently there is a distinction between the difference between (conditional) quantiles

of g.1;u/ and g.0;u/ and the (conditional) quantiles of the difference g.1;u/� g.0;u/. We follow

Doksum (1974) and many others and focus on the former.

Thus, for generic random variables a and b let Qajb.� jb/ be the � quantile of a given b D b. The

parameter of interest is

 � D  �.x�; ��jv�/ D gfx�;Qujv.��jv�/g D Qg.x�;u/jv.��jv�/; (2)

for given values of x�; ��; v�, where the last equality follows from assumptions D and E below.2

The function  � can be used to define causal parameters of interest. For instance, we will call

QMTE.��jv�/ D  �.1; ��jv�/ �  �.0; ��jv�/ (3)

the quantile marginal treatment effect, which is the quantile version of the marginal treatment effect

of e.g. Heckman and Vytlacil (2005). Integrating QMTE over �� yields the marginal treatment effect

(MTE). Integrating the MTE over v� with various weight functions is discussed in Heckman and

Vytlacil (2005), and for one such choice results in the average treatment effect.

We make the following model assumptions, which are based on those in JPX11 and CH05.

Assumption A. u; v have (marginal) U.0; 1�–distributions.

Assumption B. u; v are independent of z.

Assumption C. �.z; v/ is left–continuous and nondecreasing in v for all values of z.

Assumption D. g.x�; u/ is nondecreasing in u on .0; 1�.
1Our analysis can be adapted to the potential outcome framework, where the two potential outcomes may have different
errors. There is no loss of generality in assuming a scalar–valued error in a potential outcome variable by the Cantor–
Schroeder–Bernstein theorem. But it becomes restrictive once monotonicity conditions are imposed, as we will do later.
For a detailed discussion of issues in models with vector–valued errors, see Kasy (2011).
2We define quantiles in the standard way, i.e. Qajb.� jb/ D inffa W P.a � ajb D b/ � �g.
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Assumption E. g.x�; u/ is left–continuous in u at Qujv.��jv�/.

Assumption F. For all � 2 .0; 1�, Qujv.� jv/ is nondecreasing in v.

Assumption A is fairly standard in the literature and is essentially a normalization. Assumption B

is strong, but indispensable here. The conditions on � in assumption C are also common. Assump-

tions A to C imply that one can represent the relationship between x; z; v as x D 1fv > p.z/g,

where 1 is the indicator function and p.z/ D P.x D 0jz D z/ is one minus the propensity score;

see e.g. Vytlacil (2006). Assumptions D and E are needed for the last equality in (2), as noted before.

Note that assumption D is weaker than strict monotonicity of g in u on .0; 1�. In particular, if for

instance y represents earnings then assumptions D and E allow for the case where there is a mass

point at the minimum wage and the minimum wage is below the desired quantile. Note also that

g.x�; �/ is allowed to have a discontinuous jump at Qujv.��jv�/.

The positive dependence condition in assumption F is used in both JPX11 and CH05.3 We use

assumption F to obtain identifiable bounds for �, but it is not needed to establish point identification

of  � if there are continuous instruments and g.x�; u/ is continuous at Qujv.��jv�/.

Let VL; VU be arbitrary subsets (of positive measure) of .0; v�� and .v�; 1�, respectively. Then

assumptions A, D and F imply that

gfx�;Qujv.��jVL/g �  � � gfx�;Qujv.��jVU /g; (4)

which can be seen by inverting the inequality e.g.

Pfg.x�;u/ � yjv 2 VU g D
1

P.v 2 VU /

Z
VU

Pfg.x�;u/ � yjv D vgdv

�
1

P.v 2 VU /

Z
VU

Pfg.x�;u/ � yjv D v�gdv D Pfg.x�;u/ � yjv D v�g:

The bounds in (4) are discussed in detail in CH05 and JPX11. Since it is important for our discus-

sion to understand when these bounds are identified, we briefly discuss CH05 and JPX11 focusing

on the case x� D 0.

Let V.0/ D
˚�
0; p.z/

�
W z 2 Sz

	
and V.1/ D

˚�
p.z/; 1

�
W z 2 Sz

	
. If VL 2 V.0/ then

assumptions B, D and E imply that

gf0;Qujv.��jVL/g D Qg.0;u/jv.��jVL/ D Qyjx;z.��j0; z/;

3Negative dependence can be dealt with similarly. The essence of this assumption is the monotonicity of Qujv.� j�/.
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which is identified, where z 2 Sz is such that VL D
�
0; p.z/

�
. However, exclusively relying on sets

of the form
�
0; p.z/

�
leads to a trivial upper bound of the identified set because there is no set of that

form that lies in its entirety above v�. Similarly, relying on V.1/ leads to a trivial lower bound in the

case of x� D 1. CH05 stops here and interprets this problem as a violation of his rank condition.

JPX11 go on to show that the bounds in (4) are identified when sets not belonging to V.0/ are

utilized. For instance, suppose that there exist z and Qz in Sz such that v� � p. Qz/ < p.z/. Then�
p. Qz/; p.z/

�
D
�
0; p.z/

�
�
�
0; p.Qz/

�
� v�, i.e. all elements in the majorant side set are no less

than v�. Hence one can choose VU D
�
p. Qz/; p.z/

�
in (4) to obtain an upper bound, namely the ��

quantile of the conditional distribution given by

Pfg.0;u/ � yjv 2 VU g

D
1

p.z/ � p. Qz/

˚
P.y � yjx D 0; z D z/p.z/ � P.y � yjx D 0; z D Qz/p. Qz/

	
: (5)

A Dynkin system D.x�/ generated by V.x�/ can be obtained by applying various set operations

to V.x�/ and ensures that gfx�;Qujv.��jV /g is identified whenever V 2 D.x�/. Such a Dynkin

system can used to identify the tightest bounds in (4). The following definition was first introduced

in JPX11.

Definition 1 (Dynkin System, JPX11). A Dynkin system D.x�/ is defined by the collection D1 in

the following iterative scheme. Let D0 D V.x�/. Then for all t � 0, DtC1 consists of all sets A�

such that at least one of the following three conditions is satisfied.

(i) A� 2 Dt ,

(ii) 9A1; A2 2 Dt W A1 � A2; �.A2 � A1/ > 0; A� D A2 � A1,

(iii) 9A1; A2 2 Dt W A1 \ A2 D ;; �.A1 [ A2/ > 0; A� D A1 [ A2.

Since fDt W t D 0; 1; � � � g is an increasing sequence of collections of sets, we have D.x�/ D

[1tD0Dt . It can be shown that the conditional distribution function of g.x�;u/ given v 2 V is

identified whenever V 2 D.x�/.

Let DL.x�; v�/ D fV 2 D.x�/ W V � v�g and let DU .x�; v�/ be similarly defined. Then

JPX11 have shown4 that under assumptions A to F identified bounds for  � are given by

sup
V 2DL.x�;v�/

gfx�;Qujv.��jV /g �  � � inf
V 2DU .x�;v�/

gfx�;Qujv.��jV /g: (6)

4The conditions in JPX11 are slightly different from the ones here.
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KM14 have shown that there are circumstances under which the above bounds can be tightened

further.

We now discuss how additional continuity conditions can be used to obtain the point identification

of  �.

Assumption G. Qujv.��jv/ is left–continuous in v at v�.

Assumption H. There exists a sequence fztg in Sz such that p.zt / is (strictly) increasing in t with

supremum v�.

Left–continuity in assumptions E and G can be replaced with right–continuity. Please note that

left–continuity does not rule out the presence of discrete jumps in the function g and it hence allows

for mass points in the distribution of y . A sufficient condition for assumption H is that at least one

element of the vector of instruments z has continuous variation (given the other elements) and p is

continuous in that element of z.

We can now strengthen the result in (6).

Theorem 1. (i) Suppose that assumptions E to H are satisfied. Then

sup
VL2DL.x�;v�/

gfx�;Qujv.��jVL/g D  � � inf
VU2DU .x�;v�/

gfx�;Qujv.��jVU /g: (7)

(ii) If moreover assumptions A to D are satisfied then  � is point–identified.

Theorem 1 implies that the Dynkin system approach of JPX11 can be used to achieve point identi-

fication of  � using continuous variation in the propensity score p.z/. This result can be compared

to CH03 where point identification is achieved assuming strong monotonicity of �.z; v/ in v, which

implies that x is continuously distributed. If left–continuity (assumptions E and G) is strengthened

to continuity then the inequality in (7) becomes an equality such that the intersection bounds in (6)

collapse to  �.

Continuity of g.x�; u/ at u D Qujv.��jv�/ is more helpful for the identification of  � than

continuity of Qujv.��jv/ at v�. Indeed, continuity of Qujv.��jv/ is of at most modest help to relax

assumption H whereas continuity of g.x�; u/ obviates the need for monotonicity assumptions on

Qujv.� jv/ in v (assumption F) for the identification of  �, as theorem 2 demonstrates. However,

as we have pointed out before, assuming continuity rather than left–continuity of g will impose

restrictions on the support of the outcome, which would undesirable.

http://www.economics.utoronto.ca/public/workingPapers/tecipa-515.pdf


7

Assumption I. g.x�; u/ is continuous at Qujv.��jv�/.

Theorem 2. Suppose that assumptions A to D and G to I are satisfied. Then  � is identified.

Please note that theorems 1 and 2 rely on monotonicity/continuity but not on smoothness (i.e.

differentiability). We now discuss how these results are connected with the existing results of iden-

tification via local instruments in the treatment effects literature.

It is well–known in the treatment effects literature that differentiability can result in point iden-

tification of the distribution functions of counterfactual outcomes conditional on p.z/ D v�.5 We

now explain how this treatment effects literature result is related to the results in theorems 1 and 2.

Let @zp.z�/ be the partial derivative of p with respect to z at z� andG�.yjx�; z/ D P.y � yjx D

x�; z D z/.

Assumption J. For any y 2 R, G�.yjx�; z/ is continuously differentiable in z at z�.

Assumption K. For some z� in the interior of Sz , (i) p.z�/ D v� and (ii) @zp.z�/ ¤ 0.6

It is useful to compare assumptions E, G and H with assumptions J and K. If the propensity score

is differentiable then it follows from (8) that assumption J is equivalent to continuity of Fujv.ujv/ in

v at v� and indeed to the differentiability of Fuv.u; v/ in v at v�.

We now show that the smoothness conditions in assumptions J and K provide an alternative path to

identification. Suppose that z is scalar–valued. Since x D 0 and z D z is equivalent to v 2
�
0; p.z/

�
and z D z, we have that for any y 2 R,

G�.yjx�; z/ D P
˚
g.0;u/ � yjv 2 .0; p.z/�

	
D

1

p.z/

Z p.z/

0

P
˚
g.0;u/ � yjv D v

	
dv: (8)

Differentiating both sides in (8) and evaluating at z� yields

P
˚
g.0;u/ � yjv D v�

	
D G�.yjx�; z�/C v� @zG

�.yjx�; z�/
@zp.z�/

: (9)

The right hand side in (9) is identified and  � is defined as the smallest value of y for which the left

hand side in (9) is equal to ��. An expression similar to (9) can be found in CL09.

For vector–valued z it is more natural to work with the propensity score.7 Thus, let G.yjx; p/ D

Pfy � yjx D x; p.z/ D pg so that assumption B implies G�.yjx; z/ D Gfyjx; p.z/g . Then, as
5See e.g. CL09 and Heckman and Vytlacil (1999, 2001).
6Please note that @zp is vector–valued and we only require one of its elements to be nonzero.
7Assumption J is sufficient but not necessary for the differentiability of G.yjx; �/.
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was shown by CL09, we have

P
˚
g.0;u/ � yjv D v�

	
D G.yj0; v�/C v�@pG.yj0; v�/;

P
˚
g.1;u/ � yjv D v�

	
D G.yj1; v�/ � .1 � v�/@pG.yj1; v�/:

(10)

Theorem 3. If assumptions A to D, J and K are satisfied then  � is identified.

Theorems 1 to 3 articulate a trade–off between monotonicity, continuity, and smoothness assump-

tions. Continuity of Fujv.ujv/ in v and differentiability of the propensity score are convenient for

estimation but neither condition is necessary for identification.

Finally, we note that the Dynkin system idea in theorems 1 and 2 has applications far beyond the

simple binary endogenous variable model of this paper: see e.g. JPX11; Jun, Pinkse, and Xu (2012);

Jun, Pinkse, Xu, and Yildiz (2010).

3. Estimation

3.1. Assumptions. We now proceed to describe and motivate our estimation procedure, for which

we will focus on the case x� D 0. We add a subscript i to y;x; z;u; v and assume that we have an

i.i.d. sample of size n. We allow for the presence of exogenous covariates ai 2 Rda in the function

g, i.e. we now consider

y i D g.xi ; ai ;ui /: (11)

The covariates ai are contained in the vector of instruments zi , which contains one or more additional

elements qi and is assumed to be independent of ui ; vi , as is formally assumed here. However, in

our proofs, we explicitly allow for the possibility that ai and zi have the same dimension, because

in the semiparametric version of our estimator introduced in section 4 we consider a|

i �0 and z|

i 
0

(with ai a subvector of zi ) in lieu of ai and zi , respectively.

Assumption L. Assumptions A to D and K are for some q� satisfied with zi D Œq
|

i ; a
|

i �
|, z� D

Œq�|
; a�|

�
|, and with g.x�; a�; u/ in lieu of g.x�; u/.

Let Fj W Rdz ! R denote the class of functions which are j times continuously differentiable on

Z and j C 2 times boundedly differentiable with respect to z1. We replace assumption J with the

stronger assumption M.

Assumption M. G�.yj0; z/ 2 F2.
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The addition of the covariates ai does not complicate the identification argument much. Indeed,

one can simply condition on ai D a� in which case the entire argument of section 2 can be repeated

with qi assuming the role of zi . For estimation we adopt the identification argument of theorem 3,

because it is the most convenient. Assumption M is introduced to obtain the desired convergence

rate.

Thus, let bi D Œpi ; a
|

i �
|, zi D Œq

|

i ; a
|

i �
|, pi D p.zi /, and (re)define

G.yjx; a; p/ D P.y i � yjxi D x; ai D a;pi D p/: (12)

We start by estimating

 � D  �.x�; ��ja�; v�/ D Qg.x�;a�;ui /jvi .�
�
jv�/ D g

˚
x�; a�;Qui jvi .�

�
jv�/

	
: (13)

We propose estimating  � by inverting the functions H.�ja�; v�/ defined by

H.yja; v/ D Pfg.0; a;ui / � yjvi D vg;

which under assumption L satisfies

H.yja; v/ D G.yj0; a; v/C v@pG.yj0; a; v/:

So whereas the estimator in CL09 is semiparametric and the object of interest is the mean,8 our

approach is nonparametric and we estimate quantiles which entails an additional inversion step which

requires some empirical process theory. However, in section 4 we discuss the possibility of using

single index restrictions allowing for the possibility of semiparametric estimation, albeit in a more

structural fashion than CL09.

Let G.yja; v/ D G.yj0; a; v/ and by assumptions B to D forwi D w.zi / for some function w to

be introduced later,

G.yja�; v�/ D Ef1.y i � y/wi jxi D 0; ai D a�;pi D v�g
E.wi jxi D 0; ai D a�;pi D v�/

: (14)

Since the function p is estimable, so is the function G, and thence H . We propose estimating both

G and @vG by nonparametric kernel (derivative) regression estimation and inverting the resulting

estimator of H.�ja�; v�/ to estimate  �.
8or a quantile under an additional additive separability assumption.
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It is well–known that kernel regression estimation has problems in the tails of the distribution,

or more precisely wherever the density of conditioning variables is close to zero. In the estimation

we hence only use observations i for which zi belongs to some convex and compact set Z on which

the density f of zi is bounded away from zero and which is further constrained below. Not using

all data does have efficiency implications, but the commonly used alternative of sample–size depen-

dent trimming is practically cumbersome, technically messy, and any meaningful gains of such a

procedure in empirical work are phantasmic. In what follows we will assume zi to be continuously

distributed even though in empirical work discrete covariates and instruments are prevalent. Kernel

estimation with discrete regressors can be accommodated (see e.g. Delgado and Mora, 1995) at the

expense of longer proofs. However, because in practice the index version of the estimator proposed

in section 4 will often be more attractive and since for the index version only one of the elements

of ai and one of the elements in zi that are not in ai must be continuously distributed, we do not

weaken the assumption here.

The function w in (14) is chosen to be nonnegative on Z and zero elsewhere. Let Ixi D 1.xi D

0/wi , I i .y/ D Ixi1.y i � y/, let fap be the joint density of ai ;pi , and let

S0x D S0x.a
�; v�/ D E.Ixi jai D a�;pi D v�/fap.a�; v�/; S1x D @vS0x;

S0.y/ D S0.yI a
�; v�/ D EfI i .y/jai D a�;pi D v�gfap.a�; v�/; S1.y/ D @vS0.y/:

Then, noting that G.yja�; v�/ D S0.y/=S0x , it follows that

H.yja�; v�/ D S0.y/S0x C v
�S1.y/S0x � v�S0.y/S1x

S20x
:

We now develop our estimator. Let k be a kernel, K be a product kernel based on k whose

dimension is determined by its argument, and let h0; h1; hz be bandwidths. DefineKzi .z/ D K
˚
.z�

zi /=hz
	ı
h
dz
z , and Opi D Op.zi /, where

Op.z/ D

Pn
iD1Kzi .z/1.xi D 0/Pn

iD1Kzi .z/
: (15)

Let furtherKaij D K
˚
.a� � ai /=hj

	ı
h
da
j , k.s/ij D k

.s/
˚
.v� �pi /=hj

	ı
hsC1j , Ok

.s/
ij D k

.s/
˚
.v� �

Opi /=hj
	ı
hsC1j , and

OS s.yIp/ D
1

n

nX
iD1

k
.s/
is KaisI i .y/;

OS s.yI Op/ D
1

n

nX
iD1

Ok
.s/
is KaisI i .y/; (16)
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The proposed estimator is then given by

OOH .yja�; v�/ D
OOS 0.y/

OOS 0x C v
� OOS 1.y/

OOS 0x � v
� OOS 0.y/

OOS 1x

OOS 20x

; (17)

where OOS 0.y/ D OS 0.yI Op/,
OOS 0x D

OOS 0.1/,
OOS 1.y/ D OS 1.yI Op/, and OOS 1x D

OOS 1.1/.

The bandwidths h0; h1, and hz vary with n according to

h0 � n
��0 ; h1 � n��1 ; and hz � n��z (18)

for some �0; �1; �z > 0 to be constrained in assumption S.

So there are a total of five different input parameters here: a kernel, the w–function, and three

bandwidths. The number of bandwidths can be reduced to two by choosing h0 D hz , but our

conditions require that h0 and hz converge to zero faster than h1.

We make the following assumptions.

Assumption N. G.�ja�; v�/ and @pG.�ja�; v�/ are differentiable in y, and hence so isH.�ja�; v�/.

Assumption N presumes a continuous outcome, which is not necessary for identification but is

convenient for estimation. It is sufficient for the quantile of interest to be uniquely defined and is

needed for the empirical process results that are used.

Assumption O. Z D Z1 � QZ is a subset of the interior of the support Sz of zi D Œzi1; Qz
|

i �
|, for

which QZ � Rdz�1;Z1 D Œ
N
z1; Nz1� for some

N
z1 < Nz1 are compact and convex. On Z the density

f 2 F2 of zi is bounded away from zero. Finally, Z contains points of the form .q; a�/ and for any

such points and any vector � 2 Rda there exists an � > 0 such that .q; a� � ��/ and .q; a� C ��/

are also in Z.

Assumption P. p 2 F2 is (strictly) increasing in its first argument and 0 < Pfp. Nz1; Qzi / � v
�g <

Pfp.
N
z1; Qzi / � v

�g < 1.

Assumptions M, O and P are typical for the kernel derivative estimation literature, albeit that we

require the existence of one extra derivative in the first argument. There is nothing special about the

first argument (other than that it is an element of qi rather than ai ); one of the instruments used must

satisfy this condition, but there is no need to know, or indeed specify, which one. The number of

required derivatives with respect to z1 can possibly be reduced by one at the expense of much more

restrictive conditions on the bandwidth sequences (assumption S) and permitted dimensions da; dz .
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The remaining assumptions (assumptions Q to S below) pertain to the choice of input parameters

and are hence of lesser importance as long as input parameters that satisfy the properties exist.

Assumption Q. w 2 F2 is positive on the interior of Z, zero everywhere else, and nowhere greater

than one.

Assumption Q is there both to ensure that only observations i with zi 2 Z are used (the need

for which was explained earlier) and to allow us to use standard kernel bias expansions by removing

discontinuities on the boundaries of Z.

We now state our conditions for the kernel and bandwidth choices.

Assumption R. The kernel k is even, everywhere nonnegative, infinitely many times boundedly

differentiable, and integrates to one. It further satisfies �s2 D
R
fk.s/.t/g2dt <1 for s D 0; 1, and

�2 D
R
k.t/t2dt <1.

Conditions on the kernel similar to those in assumption R are standard in the kernel estimation

literature. Since we get to choose k, assumption R is innocuous. It is possible to require a smaller

number of derivatives at the expense of longer proofs and possibly stronger restrictions on the band-

widths than those found in assumption S.

Assumption S. The constants �0; �1; �z defined in (18) are such that for �� D max.2dz�z � 1; 0/,

2�0 < min.4�z; 1 � �zdz/, and

max
˚
��; 1 � 4max.�z; �0/; .da C 1/�0; 2.da C 2/�0 C �

�
� 1

	
< .da C 3/�1 <

min
˚
.da C 3/min.�0; �z/; 1 � �

�	:
The choice of bandwidths in assumption S results in the convergence rate

�n D n
f1�.3Cda/�1g=2: (19)

While assumption S allows for undersmoothing, the choice of �1 D 1=.7C da/ leads to the op-

timal rate of �n D n2=.7Cda/ for kernel derivative estimators (using second order kernels). Faster

convergence rates are feasible under additional smoothness conditions (more derivatives) using bias

reduction techniques such as higher order kernels or local polynomial estimation. Such an exten-

sion is a well–trodden path, which adds no new theoretical insights, and its promised performance

improvements are not often realized in samples of finite size.
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To see that �0; �1; �z exist for many (but certainly not all) combinations of da; dz , we present

table 1 which for �1 D 1=.7 C da/ lists the values of 1,000 times the values of �0; �z which are

the ‘points of gravity’ of the regions of �0; �z combinations for which assumption S is satisfied and

which are in some sense hence farthest from violating assumption S. If there is no entry in the table

for a particular da � dz�1 combination then that means that for �1 D 1=.7Cda/ there are no values

of �0; �z to satisfy assumption S. Of course, �0; �1; �z only indicate a rate; the constant multiplying

n��0 for instance still needs to be chosen.

dz
da # 1 2 3 4 5 6 7 8 9

0

226

142

345

209

142

216

190

142

174

166

142

154

1

181

125

380

180

125

221

176

125

169

166

125

145

145

125

133

2

145

111

223

144

111

168

142

111

140

136

111

125

128

111

115

3

122

100

160

121

100

132

120

100

116

115

100

107

4

107

90

126

106

90

110

104

90

100

100

90

93

5

96

83

105

95

83

95

92

83

88

6

86

76

90

85

76

83

83

76

78

7

79

71

80

77

71

75

8

72

66

72

70

66

68

Table 1. Suggested choices for 1,000 times �0; �1; �z for various combinations of da; dz .

3.2. Limit results for our estimator of H . Before stating our formal results, we introduce some

notation. Let �b D limn!1.�nh21/, �v D limn!1.�2n=nh
3Cda
1 /, py.yjz/ D P.y i � yjxi D
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0; zi D z/,

�.y; a�; v�/ D v�fap.a�; v�/�12Efpy.yjzi /w2i jai D a�;pi D v�g;

and

C.y; y�/ D C.y; y�I a�; v�/ D �fmin.y; y�/; a�; v�g � �.y; a�; v�/G.y�ja�; v�/

� �.y�; a�; v�/G.yja�; v�/CG.yja�; v�/G.y�ja�; v�/�.1; a�; v�/: (20)

Let further

C.y; y�/ D C.y; y�I a�; v�/ D �v
v�2C.y; y�I a�; v�/

S20x.a
�; v�/

;

and

B.y/ D B.yI a�; v�/ D �bv
��2

2S0x
tr
n
@v@bb|S0.yI a

�; v�/ �G.yja�; v�/@v@bb|S0x.a
�; v�/

o
:

Theorem 4. Under assumptions L to S,

�nf
OOH .�ja�; v�/ �H.�ja�; v�/g w! G;

on the space of bounded functions on Y D fy W 9u 2 U W g.0; a�; u/ D yg, L1.Y/, where G is a

Gaussian process with mean B and covariance kernel C .

Please note that table 1 implies that it is possible for the limit distribution not to be affected by the

first step estimation of p — the ‘oracle property’ — even in some cases in which dz > daC 1. This

may appear to be at odds with other results in the voluminous literature on nonparametric generated

regressors (Rilstone, 1996; Pinkse, 2001; Mammen, Rothe, and Schienle, 2012, inter multa alia)

in which nonparametrically estimated regressors do affect the optimal convergence rate unless the

estimated regressors are functions whose vector of arguments is of smaller dimension than the vector

of arguments of the function of interest. However, here we are not evaluating Op at a fixed point, say

z�, to obtain our estimate OOH .yja�; v�/. Instead we only use Opi ’s which are averaged in some sense

which reduces their contribution to the variance, thereby allowing us to use smaller hz values to

reduce the bias, also.
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3.3. Limit results for our estimator of  �. We finally turn to our estimator of  � itself. We use

the standard definition of quantile using the estimated conditional distribution function, i.e.

O � D inf
˚
Q W

OOH . Q ja�; v�/ � ��
	
:

The asymptotic behavior can then be inferred from theorem 4. Indeed, we have theorem 5.

Theorem 5. Under assumptions L to S, �n. O � �  �/ d! N.B ;V /, where

B D �
B. �/

H 0. �ja�; v�/
; V D

C. �;  �/
fH 0. �ja�; v�/g2

:

3.4. Bias and variance estimation. The bias and variance in theorem 5 can be consistently esti-

mated by standard methods. Since the bias can be removed by undersmoothing, the Jackknife, or

other methods, we focus on estimation of the variance below. Note that

H 0.yja�; v�/ D
S
.1/
0 .y/S0x C v

�S .1/1 .y/S0x � v
�S .1/0 .y/S1x

S20x
;

where letting fy.�jx; z/ be the conditional density of y i given xi D x and zi D z,8̂<̂
:S

.1/
0 .y/ D @yS0.y/ D E

˚
Ixify.yjxi ; zi /jpi D v

�	fap.a�; v�/;
S
.1/
1 .y/ D @yS1.y/ D @yvS0.y/:

For s D 0; 1, we can estimate S .1/s .y/ by

OOS .1/s .y/ D
1

n

nX
iD1

Kais
Ok
.s/
is kyi .y/Ixi ;

where kyi .y/ D k
˚
.y � y i /=hy

	
=hy with hy a bandwidth. Also, C.y; yI a�; v�/ can be estimated

by

OC.y; yI a�; v�/ D
h
1Cda
1

n

nX
iD1

K2
ai1

Ok2i11.xi D 0/w
2
i

n
1.y i � y/ �

OS 0.y/

OS 0x

o2
:

The final estimator of V can be obtained by using OOS
.1/
s and OC evaluated at y D y� D O �. The

following theorem establishes the consistency of OOS
.1/
s . O �/ and OC. O �; O �/.
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Theorem 6. Suppose that assumptions L and N to S are satisfied with hy D o.1/, 1 D o.�nhy/,

and sups jk.s/j <1. Then, for s D 0; 1,

OOS .1/s . O �/
p
! S .1/s . �/ and OC. O �; O �/

p
! C. �;  �; v�/:

4. Index

In most applications the dimensions of the ai ; zi vectors are too large for estimates to be suffi-

ciently precise. One solution to this problem is to impose semiparametric restrictions on the g and

p functions or, said differently, to assume that ai ; zi enter as indices. As a leading example, we

consider9 8<: y i D gfxi ; a
|

i �0;ui /;

xi D 1
˚
vi > p.z

|

i 
0/
	
;

(21)

albeit that in our application we allow the value of �0 in g.1; �; �/ to be different from that in g.0; �; �/.

It follows from the copious work on index models that several normalizations are needed. First,

ai ; zi should not include a constant term and even then the vectors �0; 
0 are (at best) identified

up to scale. Second, one should be able to move xi exogenously without changing ai , i.e. at least

one of the 
–coefficients on the qi component of zi should be nonzero. Indeed, if one lets z|

i 
0 D

a
|

i 
0aCq
|
i

0q then the conditions of sections 2 and 3 can be verified conditional on a|

i �0 D a
�|
�0

and taking z in sections 2 and 3 to equal q|

i 
0q; doing this requires that 
0q ¤ 0.

From now on, we take identification of  � and that of 
0; �0 as given. We also take as given that
p
n–consistent estimators O
; O� of 
0; �0 exist. We are not generally fans of high–level assumptions.

However, the structure of (21) fits well into the index model estimation literature of which Powell,

Stock, and Stoker (1989); Ichimura (1993); Klein and Spady (1993) are prominent examples. Indeed,

P.xi D 1jzi D z/ D p.z
|

0/, which yields an estimate of 
0. Further, E.yjx D x; z D z/ is an

unknown function of x; z|

0; a

|
�0, which can be used to construct an estimate of �0.

The main task for this section, then, is to establish that the estimation of the nuisance parameters


0; �0 does not affect the limit distribution of the estimator of  �.

Let OO � be defined as O �, replacing ai with a|

i O
 and zi with z|

i
O� .

Theorem 7. Suppose that O
; O� are
p
n–consistent estimates of 
0; �0, respectively. Then theorems 5

and 6 hold for OO � when ai ; zi are replaced with a|

i O
 and z|

i
O� , respectively.

9Other parametric link functions or multiple indices can be accommodated but they complicate the identification condi-
tions.
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5. Application

5.1. Data. We now apply our method to estimate the returns to college education using the NLSY

1979 data, which were used by CL09 and CHV11 inter alia. Indeed, we use the code provided by

CHV11 to obtain exactly the same data set and therefore we compare our results with CHV11: the

results of CL09 are not qualitatively different from those in CHV11. The sample consists of 1,747

white males. The data set contains a number of demographic and education–related variables as can

be gleaned from our results tables, tables 2 and 3. Even though the sample is fairly small relative to

the nonparametric specification of the model that we are estimating, we are finding several interesting

results.

A detailed description of the data can be found in CHV11 and its supplementary material,10 which

also contains summary statistics separated by education group (college versus noncollege).

5.2. Methodology. As noted in the introduction, our approach differs from that of CL09 and CHV11

in several respects. The most important difference is that in both those papers the error in the earn-

ings equation enters additively whereas in our model it enters nonparametrically, i.e. nonadditively.

Hence in CL09 and CHV11 there can be no interaction between the earnings equation error and

regressors such that potential wage curves (as a function of v�) for different covariate values are

constrained to be vertical shifts of each other, whereas ours can vary freely. This shape restriction is

also used in CHV11, which takes a more parametric (and therefore more restrictive) approach than

CL09.

Like CL09 and CHV11 we distinguish between two groups: those with a college education (group

1) and those without (group 0). For the schooling equation we use the second half of (21). For the

wage equation we allow the �–coefficients in (21) to be different across education groups, i.e. we

consider 8<: y i D g1.a
|

i �10;ui1/1fxi D 1g C g0.a
|

i �00;ui0/1fxi D 0g;

xi D 1fvi > p.z
|

i 
0/g;

(22)

(23)

where the outcome variable is a multi–year (1989–1993) average of log hourly wages deflated to

1983$: our identification analysis focuses on each of the two potential outcomes and it naturally

extends to the case where the errors in each of the potential outcome equations are different.
10See https://www.aeaweb.org/aer/data/oct2011/20061111_app.pdf

https://www.aeaweb.org/aer/data/oct2011/20061111_app.pdf
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Since xi is increasing in vi for fixed zi and vi is assumed independent of zi , we interpret vi as an

unobserved measure of an individual’s inclination to attend college, i.e. a measure of such inclination

that is not accounted for by zi .

We estimate 
0 (normalized to have a unit length) in the schooling equation using Ichimura’s

semiparametric least squares estimator (SLSE), which uses the fact that


0 D argmin
k
kD1

E
˚
xi � E.xi jz

|

i 
/
	2
:

Ichimura (1993) states conditions under which the SLSE is
p
n–consistent.

The specification of the �–parameters is in essence a double index model (Ichimura and Lee,

1991) since8<: E.y i jxi D 0; ai D a; zi D z/ D Efg0.0; a
|
�00;ui0/jvi � p.z

|

0/g D G0.a

|
�00; z

|

0/;

E.y i jxi D 1; ai D a; zi D z/ D Efg1.1; a
|
�10;ui1/jvi > p.z

|

0/g D G1.a

|
�10; z

|

0/;

albeit that in our case we already have
p
n–consistent estimates of 
0. We therefore use Escanciano,

Jacho-Chávez, and Lewbel (2010, EJL10) instead of Ichimura and Lee (1991);
p
n–consistency

obtains under conditions stated in EJL10.

Since our analysis is semiparametric, we scale the exogenous variables (i.e. controls and instru-

ments) by their standard deviations. All computations are done in Matlab using its global optimiza-

tion toolbox with 100 initial values. For the bandwidth choice we follow Härdle, Hall, and Ichimura

(1993), which entails optimizing over the coefficients for each bandwidth and then doing a grid

search over the bandwidth. The search range is .0:01; 0:41/ noting that 2n�1=5 � 0:4. There is, as

is not unusual, some sensitivity to the choice of bandwidth, but changing the bandwidth does not

affect the qualitative conclusions of our study.

10 10:1 10:2 10:3 10:4 10:5 10:6

�2
0
2

Figure 1. Effect of permanent local log earnings at age 17
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Full model No proxies‚ …„ ƒ ‚ …„ ƒ
O
 S.E. O
 S.E. CHV11

Corrected AFQT 0:4630 .0:0421/�� 0.2237
Corrected AFQT Squared 0:0411 .0:0634/ 0.0118
Mother’s Years of Schooling �0:1852 .0:0532/�� -0.1897
Mother’s Years of Schooling Squared 0:1883 .0:0680/�� 0.0258
Number of Siblings �0:4398 .0:0586/�� �0:4376 .0:0355/�� -0.3833
Number of Siblings Squared 0:0010 .0:0401/ �0:0235 .0:0302/ 0.0016
Urban Residence at 14 �0:0130 .0:0330/ 0:1243 .0:0596/� 0.0023
Permanent Local Log Earnings at 17 0:0559 .0:0239/� 0:0524 .0:0284/ -0.5112
Permanent Local Log Earnings at 17 Sq. �0:0551 .0:0234/� �0:0014 .0:0325/ 0.5146
Permanent State Unempl. Rate at 17 0:0282 .0:0329/ �0:0415 .0:0323/ -0.0145
Permanent State Unempl. Rate at 17 Sq. �0:0415 .0:0319/ 0:0266 .0:0310/ -0.0139
Presence of a College at 14 0:0135 .0:0352/ 0:0500 .0:0475/ 0.0174
� AFQT 0:0046 .0:0495/ 0.0059
�Mother’s Education 0:0087 .0:0383/ -0.0180
� Number of Siblings �0:0249 .0:0430/ �0:0212 .0:0396/ 0.0019

Local Log Earnings at 17 �0:0618 .0:0431/ �0:0686 .0:0488/ -0.0305
� AFQT �0:1882 .0:1100/ -0.1981
�Mother’s Education 0:1665 .0:0293/�� 0.1953
� Number of Siblings 0:5344 .0:0756/�� 0:3375 .0:0779/�� 0.3843

Local Unemployment Rate at 17 0:1097 .0:0428/� �0:0214 .0:0372/ 0.0377
� AFQT �0:0099 .0:0499/ -0.0052
�Mother’s Education �0:0553 .0:0380/ -0.0398
� Number of Siblings 0:0292 .0:0447/ 0:0072 .0:0355/ -0.0046

Tuition in 4 Year Public Colleges at 17 �0:1385 .0:0514/�� �0:0076 .0:0389/ -0.0279
� AFQT 0:1783 .0:0720/� 0.0081
�Mother’s Education 0:1667 .0:0355/�� 0.0297
� Number of Siblings �0:2352 .0:0498/�� �0:1113 .0:0439/� -0.0062

Bandwidth 0:03 0:04

Notes: The birth year cohort dummy coefficients are omitted from the table. The numbers in parentheses are standard
errors that are computed using the bootstrap with 500 replications. The coefficients in the full model are normalized
to have norm one with the birth year cohort dummies included. The no proxies coefficients are normalized to have the
same norm as the full model coefficients for the visible coefficients, e.g. the norm of the coefficients in the no proxies
column is the same as that of the corresponding coefficients in the full model column. The CHV11 coefficients are taken
from their online appendix, rescaled to be consistent with our choice to normalize covariates to have unit variance and
then renormalized to have the same norm as the visible vector of full model coefficients. Significance at the 5% and 1%
level is indicated with asterisks.

Table 2. Schooling equation coefficients.

5.3. Results pertaining to the schooling decision. We now turn to a discussion of our estimation

results. Table 2 shows the estimates of the schooling equation coefficients. We consider two speci-

fications: one includes proxies of intellectual ability (AFQT11and mother’s education) and the other
11The Armed Forces Qualification Test was administered to all subjects.
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does not. The full model is consistent with specifications used by others and is our main specifica-

tion. We include the models without proxies mainly to demonstrate that (i) v� should be interpreted

as an inclination to attend college conditional on ability and that (ii) the AFQT scores and mother’s

education do a great job proxying for ability.

The estimates can be interpreted as average partial effects up to scale normalization, because

the schooling equation is a single index model. The coefficients in the model without proxies are

normalized to have the same norm for the corresponding visible coefficients in the full model. The

last column of table 2 contains the corresponding estimates of the first stage logit regression reported

in the online appendix of CHV11 normalized to have the same norm as the visible coefficients of

the full model after correcting for our scale normalization of the covariates mentioned earlier. The

most striking difference is in the effect of permanent local log earnings at 17 (PLLE17): figure 1

displays the index as a function of PLLE17 holding all other regressors constant, where the domain

is mean˙two standard deviations and where the functions are vertically centered at zero. Both are

close to linear with one increasing and the other decreasing, albeit that the magnitudes of the CHV11

coefficients far exceeds ours. We have done further experiments (not tabulated) to determine the

source of this difference, which suggest that the differences are mainly due to the nonparametric and

nonseparable second stage in our estimation method: if we replace our semiparametric first stage

with a fully parametric first stage then the results are largely unchanged.

0 0:2 0:4 0:6 0:8 1
0

0:5

1

1:5

2

2:5

(a) Full model
0 0:2 0:4 0:6 0:8 1

0

0:5

1

1:5

2

2:5

(b) No proxies

Figure 2. Density of p.z|

1
0/

Figure 2 depicts the density estimates of p.z|

i 
0/. When the intelligence proxies are excluded,

the density of the propensity score is small at extreme quantiles, i.e. at extreme levels of the ob-

jects’ inclination to attend college. This is intuitive since there are no purely demographic variables

that would explain the college education decision with (near) certainty; individuals with very low

AFQT scores will not attend college with certainty but once AFQT scores and mother’s education

are omitted there are no covariates left to predict the outcome with an equal degree of certainty.
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Full model No proxies CHV11‚ …„ ƒ ‚ …„ ƒ ‚ …„ ƒ
no coll. college no coll. college no coll. college

Experience 0:7998 0:6668 0:0131 0:6511 0.0575 0.5384
Experience Squared �0:2504 �0:4453 �0:8404 �0:4946 0.0073 -0.4068
Log Local Earnings in 1991 0:2685 0:3839 �0:4730 0:4316 0.0283 0.2605
Local Unemployment in 1991 �0:1372 0:0748 0:0273 0:0766 -0.0014 0.0077
Corrected AFQT �0:0321 0:1562 0.0143 0.2202
Corrected AFQT Squared 0:0169 0:1060 -0.0171 0.1202
Mother’s Years of Schooling �0:0433 �0:0990 -0.0129 -0.0429
Mother’s Years of Schooling Sq. 0:0191 0:0336 0.0152 0.1508
Number of Siblings 0:0577 0:0024 �0:0648 �0:0131 0.0024 -0.0369
Number of Siblings Squared 0:0421 0:0306 0:0423 0:0121 -0.0036 0.0066
Urban Residence at 14 �0:0778 0:0595 0:0459 0:1747 0.0010 0.0452
Perm. Local Log Earnings at 17 �0:1781 �0:2023 �0:1534 �0:0462 0.7027 0.3201
Perm. Local Log Earnings at 17 Sq. 0:2842 0:2558 �0:0143 0:1173 -0.6936 -0.3144
Perm. State Unempl. Rate at 17 0:2230 0:1344 0:0744 0:0403 0.0210 0.2724
Perm. State Unempl. Rate at 17 Sq. �0:1034 �0:1531 �0:0955 -0.1980 -0.0222 -0.3241

Bandwidth 0:21 0:39 0:40 0:29

Notes: Birth year cohort dummy coefficients are not reported. The coefficients in the last two columns were
scaled to have the same norm as the vector containing the coefficients to the same variables in the first two
columns. The dependent variable is log hourly wages.

Table 3. Earnings equation coefficients

5.4. Results pertaining to returns to education. Regression coefficients for the second stage can

be found in table 3. The last two columns contain the coefficients of the normal switching regres-

sions reported in the online appendix of CHV11, rescaled to make them comparable to ours. The

coefficients in our full model, which as noted is our main specification, seem sensible. A few co-

efficients differ in sign from what is found in the CHV11 regressions, especially for group 0. The

most noticeable difference is in the effect of PLLE17, which is the same variable that had different

coefficients in the schooling decision equation. But most coefficients, including those on PLLE17,

are insignificant in CHV11, it is unclear what one would expect the signs of the coefficients to be,

and our model nests CHV11 so the differences may be due to misspecification or indeed noise due

to overspecification.

We now turn our attention to the potential wage curves depicted in figure 3.12 Like in the existing

literature potential wages for group 0 in the full model decrease as v� increases. There are however

some important differences: our potential wage curves for the two education groups do not cross —
12Note that averaging the covariates or v� do not yield ‘unconditional’ quantiles of potential wages.
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Figure 3. Potential wages as a function of v� for �� D 0:3 (left), �� D 0:5 (mid-
dle), and �� D 0:7 (right), with (top) and without (bottom) intelligence proxies.
Covariates are evaluated at their means. Dotted lines show (pointwise) 95% confi-
dence intervals. 2:2 � $9:03, 2:4 � $11:02, 2:6 � $13:46, 2:8 � $16:44.
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Figure 4. Return on a college education as a function of v�; ��; covariates evalu-
ated at their means; 0:2 corresponds to a 22% premium, 0:4 � 49%, 0:6 � 82%,
and 0:7 � 100%.

returns on a college education are consistently positive — and potential wages for group 1 decrease

as v� increases. There are several explanations for the decreasing potential wage curves.

One explanation is that the intelligence proxies adequately measure ability and that v� should now

be interpreted as one’s inclination to attend college. Those with an unfulfilled desire to attend college
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Figure 5. Returns to college as a function of v� for �� D 0:3 (left), �� D 0:5

(middle), and �� D 0:7 (right) for the full model. Covariates are evaluated at their
means. Dotted lines show (pointwise) 95% confidence intervals
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Figure 6. Returns for various �� values in the full model. Covariates are evaluated
at their means.
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Figure 7. Returns for �� D 0:3 (left), �� D 0:5 (middle), and �� D 0:7 (right) in
the full model at different covariate values. Covariates are evaluated as indicated.

may do poorly in the labor market, as do those who attend college despite their lack of ability (as

measured by AFQT scores and mother’s education level). Such explanations are consistent with the

graphs for the model without the intelligence proxies in figure 3 which feature (mostly) increasing
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potential wage curves because absent proxies v� is correlated with overall ability. We conclude that

AFQT and mother’s education do a good job proxying for ability and focus on the full model from

hereon.

The return on a college education at different quantiles of education equation (v�) and earnings

equation (��) unobservables are presented in figure 4, where the controls are fixed at their sample

means. Figure 5 depicts the same information in greater detail at three values of �� and figure 6 at

five values of �� but without confidence bands.

Returns to college vary substantially with both �� and v�, albeit that figure 5 suggests that at the

moderate �� quantiles depicted returns are similar except at high v� values. More striking is the

�� D 0:1 graph in figure 6, which indicates that the returns on education are substantially less at the

bottom end once inclination to attend college and demographics are controlled for.

All of the graphs discussed thus far have covariates evaluated at their means. Figure 7 introduces

variation across covariate values and depicts returns as a function of v� for three moderate values of

�� where the covariates are measured at four different values: three quartiles and the mean.

CHV11 and CL09 impose shape invariance restrictions that are not imposed by us. The shape

invariance restrictions in both of those papers imply that the returns curves (and in fact also the

potential wage curves) are identical to each other up to a vertical shift if one changes covariate

values. Such shape invariance conditions look inconsistent with figure 7.

We conclude our discussion with an analysis of the sensitivity of our results to the choice of input

parameters. The results are depicted in figure 8. The results are unusually robust to the choice of hz ,

which we attribute to the fact that the semiparametric estimation procedure averages across Opi’s.13

With severe undersmoothing the h1 curves and especially the h0 curves get the expected nonsmooth

appearance which is exacerbated by the fact that we only computed estimates at 0.1 increments of

the v�–values.

13The word ‘averaging’ here should be interpreted in the sense of inter alia Linton and Nielsen (1995), not an immediate
sample mean. We average over functions in which Opi enters as one of the arguments.
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Figure 8. Potential wages for different values of �� (0.3, 0.5, 0.7 from
left to right) and different bandwidth choices. At the top we vary h0 2

f0:05; 0:10; 0:15; 0:20; 0:25g with h1 D 0:35; hz D 0:15, in the middle we vary
h1 D f0:25; 0:30; 0:35; 0:40; 0:45g with h0 D 0:15; hz D 0:15, and at the bottom
we vary hz 2 f0:05; 0:10; 0:15; 0:20; 0:25g with h0 D 0:15; h1 D 0:35. Each col-
ored curve denotes a different bandwidth ordered from small to large (red, green,
blue, purple, and orange). Dotted curves are for the college educated case.
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Appendix A. Lemmas for Identification

Lemma A1. Suppose that assumptions G and H are satisfied. Then,

lim
t!1Qujv.��jVt / D Qujv.��jv�/;

where Vt D
�
p.zt /; p.ztC1/

�
and fp.zt /g is as in assumption H.

Proof. Choose � > 0. By assumption G there exists a v� < v� such that for all v 2 .v�; v��,

Qujv.��jv�/ � � < Qujv.��jv/ < Qujv.��jv�/C �:

Recalling that Qujv.��jv�/ is the smallest value of u for which P.u � ujv D v�/ � ��, it follows

that for all v 2 .v�; v��,

P
˚
u � Qujv.��jv�/ � �jv D v

	
< �� � P

˚
u � Qujv.��jv�/C �jv D v

	
:

Hence, if one picks t large enough to ensure that v� < p.zt / < p.ztC1/ < v� then

P
˚
u � Qujv.��jv�/C �jv 2 Vt

	
D

R p.ztC1/
p.zt /

P
˚
u � Qujv.��jv�/C �jv D v

	
dv

p.ztC1/ � p.zt /
� ��; (24)

and similarly

P
˚
u � Qujv.��jv�/ � �jv 2 Vt

	
< ��: (25)

Hence, it follows from (24) and (25) that

Qujv.��jv�/ � � < Qujv.��jVt / � Qujv.��jv�/C �:
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Since � > 0 was arbitrarily chosen, the proof is done. �

Lemma A2. Suppose that assumptions F to H are satisfied. Then,

sup
V 2DL.x�;v�/

Qujv.��jV / D Qujv.��jv�/ � inf
V 2DU .x�;v�/

Qujv.��jV /: (26)

Proof. By assumption F and definition of DL.x�; v�/ and DU .x�; v�/, we have

sup
V 2DL.x�;v�/

Qujv.��jV / � Qujv.��jv�/ � inf
V 2DU .x�;v�/

Qujv.��jV /: (27)

Now let Vt D
�
p.zt /; p.ztC1/

�
, where fp.zt /g be as in assumption G. Since Vt 2 DL.x�; v�/, we

have

8t; Qujv.��jVt / � sup
V 2DL.x�;v�/

Qujv.��jV /:

Therefore, it follows from lemma A1 that

Qujv.��jv�/ � sup
V 2DL.x�;v�/

Qujv.��jV /: (28)

Combining (27) with (28) completes the proof. �

Appendix B. Technical Lemmas

Lemma B1. Let„n D
Pn
iD1 �ni , where f�nig is an i.i.d. mean zero sequence of functions whose el-

ements can depend onn. For any compact set‡ , suppose that Q�n � 1 is such that sup�2‡k@�„n.�/k �
Q�n, let �2

n�
D sup�2‡ V�ni .�/ and let N�n be such that P

˚
sup�2‡ j�ni .�/j > N�n

	
D 0. If

�2
n�
� 1=n log Q�n and N�n � 1= log Q�n then sup�2‡ j„n.�/j � 1:

Proof. Cover ‡ using �n balls ‡1; : : : ; ‡�n with centroids �1; : : : ; ��n , in such a way that for any n,

maxtD1;:::;�n sup�2‡t k� � �tk � C=�
1=d�
n for some C independent of n. Then

sup
�2‡
j„n.�/j � max

tD1;:::;�n
sup
�2‡t

j„n.�/ �„n.�t /j C max
tD1;:::;�n

j„n.�t /j: (29)

Choose any � > 0. For ı > 0 to be chosen, let �n D .ı Q�n=�/d� .

For RHS2 in (29) we have by the Bernstein inequality that

P
n

max
tD1;:::;�n

j„n.�t /j > �
o
�

�nX
tD1

P
˚
j„n.�t /j > �

	
� 2�n exp

n
�

�2

2.n�2
n�
C N�n�/

o
� 1:
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Finally, for RHS1 in (29) we have by the mean value theorem that

P
n

max
tD1;:::;�n

sup
�2‡t

j„n.�/ �„n.�t /j > �
o
� P

n
sup
�2‡
k@�„n.�/k max

tD1;:::;�n
sup
�2‡t
k� � �tk > �

o
� P

n
sup
�2‡
k@�„n.�/k >

��
1=d�
n

C

o
� P

n
sup
�2‡
k@�„n.�/k >

ı Q�n

C

o
:

Let n!1 followed by ı !1. �

Lemma B2. Let f��
ni
g be an i.i.d. sequence of mean zero functions defined on a compact set ‡

for which for some C < 1, supn
�
n�CE

˚
sup�2‡k@���

ni
.�/k

	�
< 1. Let further �2

n��
D

sup�2‡ V��
ni
.�/ and supn P

�
sup�2‡ j��

ni
.�/j > N��n

�
D 0. Then for any

�n � max
�q
�2
n��

log n=n; N��n log n=n
�
,

sup
�2‡

ˇ̌̌
n�1

nX
iD1

��
ni
.�/
ˇ̌̌
� �n:

Proof. In lemma B1 take �ni D ��
ni
=n�n. �

Lemma B3. Let f�ig be an i.i.d. sequence, let �i include y i as an element, and let f OAig be such

that OAi D An.�i ; �1; : : : ; �i�1; �iC1; : : : ; �n/ for arbitrary function An. If P
�
k OA1k > �

�
� 1=n

and supy2Y P
n


Pn�1

iD1 OAiI i .y/



 > �o � 1=n, then supy2Y



P
i

OAiI i .y/


 � 1.

Proof.

P
n
sup
y2Y




 nX
iD1

OAiI i .y/



 > 2�o D P

n
max
tD1;:::;n




 nX
iD1

OAiI i .y t /



 > 2�o � nX

tD1
P
n


 nX
iD1

OAiI i .y t /



 > 2�o

� n sup
y2Y

P
n


n�1X
iD1

OAiI i .y/



 > �oC nP

˚
k OA1k > �

	
� 1: �

Appendix C. V–statistics

Let @n D f1; : : : ; ng, ‡n` D @`n, and let ‡n j̀ be the set of vectors in ‡n` with exactly j distinct

elements. Let further for any � 2 ‡n`, �� D .��1 ; : : : ; ��` /
|.

Lemma C1. ForVn` D
P
�2‡n` m.��/ andU .`;j /n D

P
�2‡n j̀ m.��/, we haveVn` D

P`
jD1U

.`;j /
n ,

whereU .`;j /n is a U–statistic of order j whose kernelm.`;j / consists of a sum of
Pj
tD1.�1/j�t t`�1=f.j�

t /Š.t � 1/Šg elements.14

14These are Stirling numbers of the second kind.
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Proof. See Lee (1990, theorem 1 on p.183). �

Lemma C2. For any symmetric j–th order U–statistic kernel m.j /, let Unj D
P
�2‡njj m

.j /.��/.

Let further for 0 � t � j and any a1; : : : ; at , m
.j /
t .a/ D Em.j /.a1; : : : ; at ; �1; : : : ; �j�t /, Unjt DP

�2‡ntt m
.j /
t .��/, and U cnjt the corresponding canonical U–statistic (De la Peña and Giné, 1999).

Then if �.j / D Em.j /.�1; : : : ; �j /,

Unj D
nŠ

.n � j /Š
�.j / C

jX
tD1

 
j

t

!
.n � t /Š

.n � j /Š
U cnjt :

Proof. This is essentially the Hoeffding decomposition (Lee, 1990, theorem 1 on p.26) combined

with a rearrangement of terms.15 �

Lemma C3. For U cnjt defined in lemma C2, we have

P
�
jU cnjt j > �

�
� Ct exp

h
�

�2=t=Ct

n�
2=t
jt C ˇ

2=.tC1/
jt n.t�1/=.tC1/�2=ft.tC1/g

i
;

where Ct is a constant which only depends on t , ǰ t D supm
.j /
t .�/, �2jt D Vm.j /t .�1; : : : ; � t /.

Proof. Follows from Arcones and Giné (1993, proposition 2.3(c)). �

Lemma C4. For an `–th order V–statistic Vn` as defined in lemma C1 with symmetric kernelm, let

for 1 � t � j � `, m.`;j / be defined as in lemma C1, �.`;j / D Em.`;j /.�1; : : : ; �j /, m
.`;j /
t .a/ D

Em.`;j /.a1; : : : ; at ; �1; : : : ; �j�t /, ˇ.`;j /t D supm
.`;j /
t , and � .`;j /t D

q
Vm.`;j /t .�1; : : : ; � t /.

Then P.Vn` > �n/ decreases faster than any polynomial of n, where

�n D max
1�t�j�`

h
.log n/tC1max

n
nt=2�

.`;j /
t ; n.t�1/=2ˇ.`;j /t ; nj�.`;j /

oi
:

Proof. In lemma C1 the V–statistic is separated into a number (independent of n) of U–statistics.

Each of these U–statistics is further separated into a number (again independent of n) of canonical

U–statistics in lemma C2 plus a mean. Finally, apply lemma C3 to each element individually.16 �
15The representation is slightly different here from the one in Lee (1990) because the U–statistic kernel incorporates a
number of permutations in his case.
16Because the number of canonical U–statistics has an upper bound independent of n, looking at each individual term
separately is sufficient.
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Appendix D. Z

Let � be such that �fp.z1; Qz/; Qzg D z1 for all .z1; Qz/ 2 Z. The function � is well–defined by

assumption P.

Lemma D1. For all p and any c > 0, fp.pj Qz/ is four times boundedly differentiable with respect

to p, uniformly in Qz for which Qf . Qz/ � c.

Proof. Note that Fp.pj Qz/ D P.pi � pjQzi D Qz/ D Pfzi1 � �.p; Qz/jQzi D Qzg; such that fp.pj Qz/ D

@p�.p; Qz/f f�.p; Qz/; Qzg= Qf . Qz/. The stated result then follows from assumption O. �

Lemma D2. For all p for which 9z 2 Z W p.z/ D p and all t times boundedly differentiable

functions � for which �.z/ D 0 for all z 62 Z, Ef�.zi /jpi D pgfp.p/ is min.t; 3/ times boundedly

differentiable in p.

Proof. Let � be as in lemma D1. Then for any z 2 Z and p D p.z/,

Ef�.zi /jpi D pgfp.p/ D

Z
�f�.p; Qz/; Qzgf f�.p; Qz/; Qzg@p�.p; Qz/d Qz: �

Appendix E. Kernels

Lemma E1. Let f.�i ; zi /g be i.i.d., and suppose that �.z/f .z/ with �.z/ D E.�i jzi D z/ has two

bounded derivatives. Then

sup
z2Z

ˇ̌̌
E
˚
Kzi .z/�i

	
� �.z/f .z/

ˇ̌̌
� h2z :

Proof. This follows from a standard kernel bias expansion. �

Lemma E2 can be found, often in slightly different form, in many other sources, including Pagan

and Ullah (1999).

Lemma E2. Let f.�i ; zi /g be i.i.d., �i uniformly bounded, and �2
�
.z/ D V .�i jzi D z/ is continuous

on Z. Then

sup
z2Z

ˇ̌̌1
n

nX
iD1

�
Kzi .z/�i � E

˚
Kzi .z/�i

	�ˇ̌̌
�

log nq
nh
dz
z

:

Proof. Follows directly from lemma B2. �

Let

˛n D log n=
p
nhdzz C h

2
z : (30)
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Let further Or D Op Of , where Of is the kernel density estimator of f using bandwidth hz and kernel

K.

Lemma E3. (i) supz2Z j
Of .z/� f .z/j � ˛n, (ii) supz2Z j Or.z/� r.z/j � ˛n, (iii) supz2Z j Op.z/�

p.z/j � ˛n,

Proof. The first two results follows by combining lemmas E1 and E2 and the third one from the first

two by noting that for any Qz 2 Z,

r. Qz/ � supz2Z j Or.z/ � r.z/j

f . Qz/C supz2Z j
Of .z/ � f .z/j

� Op. Qz/ �
r. Qz/C supz2Z j Or.z/ � r.z/j

f . Qz/ � supz2Z j
Of .z/ � f .z/j

: �

Lemma E4. For some � > 0, limn!1 Pfinfz2Z
Of .z/ < �g D 0.

Proof. Note that

P
n
inf
z2Z

Of .z/ < �
o
� I

n
inf
z2Z

f .z/ < 2�
o
C P

n
sup
z2Z

j Of .z/ � f .z/j > �
o
:

Apply lemma E3. �

Appendix F. Expansions

Recalling (16), let E.yIp/ D EfI i .y/jai D a�;pi D pg, E.y/ D E.yI v�/, and

NS s.yIp/ D
1

n

nX
iD1

k
.s/
is KaisE.y/;

NS s.yI Op/ D
1

n

nX
iD1

Ok
.s/
is KaisE.y/: (31)

Let further Kzij D Kzi .zj /.

Lemmas F1 to F3 serve as inputs into establishing two results, namely

sup
y

ˇ̌
OS s.yI Op/ � NS s.yI Op/ � OS s.yIp/C NS s.yIp/

ˇ̌
� 1=�n (32)

for s D 0; 1 and

sup
y

ˇ̌
NS 0.yI Op/ � NS 0.yIp/

ˇ̌
� 1=�n; (33)

i.e. lemmas F6 and F7. Each of these expression is expanded using the mean value theorem to some

order J to apply lemmas F1 to F3. For instance, by assumption R, the RHS of (32) is bounded above

by

J�1X
jD1

1

j Š
sup
y2Y

ˇ̌̌̌
1

n

nX
iD1

k
.sCj /
is Kais.pi � Opi /

j
˚
I i0.y/ � E.y/

	ˇ̌̌̌
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C sup
y2Y

1

nhsC1CJs J Š

nX
iD1

ˇ̌̌̌
Kais.pi � Opi /

J
˚
I i0.y/ � E.y/

	ˇ̌̌̌
; (34)

where the first term is covered by lemmas F1 and F2 and the second term is dealt with in lemma F3.

Lemma F1. Let �1; : : : ; �j ; �� 2 F2, and Tj � Rj consist of vectors whose elements are all either

equal to one or zero and let u�
`i

be such that E.u�
`i
jzi / D 0 a.s. and E.u�2

`i
jzi D z/ is continuous

on Z. Then for s D 0; 1, j D 1; 2; : : : , and all t 2 Tj ,

sup
y2Y

ˇ̌̌̌
1

njC1
nX

i0D1
� � �

nX
ijD1

k
.sCj /
i0s

Kai0s�
�
i0

˚
I i0.y/ � E.y/

	 jY
`D1

Kzi0i`u
�t`
`i`
.�`i` � �`i0/

1�t`
ˇ̌̌̌

� 1=�n; (35)

where �`i D �`.zi / and similarly for other � symbols.

Proof. As will become apparent in lemma F6, for every j the LHS in (35) corresponds to the j–th

term in a Taylor expansion of OS s.yI Op/� NS s.yI Op/ around OS s.yIp/� NS s.yIp/; see (34). Because by

lemma E3 Opi �pi converges faster (uniformly in i ) than the extra 1=hs incurred for each additional

derivative, the convergence rate is slowest for s D j D 1, so we establish convergence at the

promised rate for that case; all other cases can be verified similarly, albeit sometimes more painfully.

Thus, we use lemma C4 to obtain a rate for

sup
y2Y

ˇ̌̌̌
1

n2

nX
i0D1

nX
i1D1

k00i01Kai01�
�
i0

˚
I i0.y/ � E.y/

	
Kzi0i1u

�t1
1i1
.�1i1 � �1i0/

1�t1
ˇ̌̌̌
: (36)

Let �i contain all random variables pertaining to observation i . Noting that (36) is a V statistic

and that lemma C4 is based on a decomposition of the V statistic into a sum of U statistics, we have

for the m–symbols of lemma C4 and for some N�; Q� 2 F0,

m.2;2/.�i0 ; �i1/ D
1

2n2

h
k00i01Kai01�

�
i0

˚
I i0.y/ � E.y/

	
Kzi0i1u

�t1
1i1
.�1i1 � �1i0/

1�t1

C k00i11Kai11�
�
1i1

˚
I i1.y/ � E.y/

	
Kzi0i1u

�t1
1i0
.�1i0 � �1i1/

1�t1
i
;

m
.2;2/
1 .�i / D E

˚
m.2;2/.�i ; �i1/j�i

	
(i1 ¤ i )

'

8̂̂̂̂
<̂
ˆ̂̂:
h2z
2n2

h
k00i1Kai1�

�
i

˚
I i .y/ � E.y/

	
N�i ;

Ck00i1Kai1

˚
E.yIpi ; ai / � E.yI v�; a�/

	
Q�i

i
; t1 D 0;

h2z
2n2
k00i1Kai1�

�
i

˚
I i .y/ � E.y/

	
N�iu
�
i1; t1 D 1;
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m
.2;1/
1 .�i / D

8̂<̂
:0; t1 D 0;

1
n2
k00i1Kai1��i

˚
I i .y/ � E.y/

	
Kzi iu

�
i1; t1 D 1:

n2�.2;2/ � h2z; (37)

n�.2;1/ �
1

nh
dz
z

; (38)

p
nˇ

.2;2/
2 �

1

n3=2h
dz
z h

3Cda
1

; (39)

ˇ
.2;2/
1 �

h2z

n2h
3Cda
1

; (40)

ˇ
.2;1/
1 �

1

n2h
dz
z h

3Cda
1

; (41)

n�
.2;2/
2 �

1

nh
3Cda
1

; (42)

p
n�

.2;2/
1 �

h2z

n3=2h
.5Cda/=2
1

; (43)

p
n�

.2;1/
1 �

1

n3=2h
.5Cda/=2
1 h

dz
z

: (44)

Sufficient conditions for (37) to (44) to converge at a rate faster than 1=�n are respectively

.3C da/�1 > 1 � 4�z; (45)

.3C da/�1 > 2dz�z � 1; (46)

.3C da/�1 < 2 � 2�zdz; (47)

.3C da/�1 < 3C 4�z; (48)

.3C da/�1 < 3 � 2�zdz; (49)

.3C da/�1 < 1; (50)

�1 < 1C 2�z; (51)

�1 < 1 � �zdz : (52)

Conditions (48) to (52) are implied by (47) and/or standard kernel estimation conditions needed

for consistency of the estimator of H without nuisance parameters. Thus, only (45) to (47) are
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potentially relevant and the lemma statement holds if

max.1 � 4�z; 2dz�z � 1; 0/ < .3C da/�1 < min.2 � 2�zdz; 1/;

which is satisfied by assumption S. �

Lemma F2. Using essentially the same notation and conditions as in lemma F1, for j D 1; 2; : : : ,ˇ̌̌̌
1

njC1
nX

i0D1
� � �

nX
ijD1

k
.j /
i00
Kai00

jY
`D1

Kzi0i`u
�t`
`i`
.�`i` � �`i0/

1�t`
ˇ̌̌̌
� 1=�n: (53)

Proof. This lemma is used in lemma F7 to deal with the expansion of NS 0.yI Op/ around NS 0.yIp/.

Using the same strategy and rationale for focusing on the case s D 1 as in lemma F1, we have

m.2;2/.�i0 ; �i1/ D
1

2n2

h
k0i00Kai00Kzi0i1u

�t
1i1
.�i1 � �i0/

1�t

C k0i10Kai10Kzi0i1u
�t
1i0
.�i0 � �i1/

1�ti;
m
.2;2/
1 .�i / '

8̂<̂
:
h2z
n2
k0i0Kai0

N�i ; t D 0;

1
2n2
k0i0Kai0

N�iu
�
i1; t D 1:

m
.2;1/
1 .�i / D

8̂<̂
:0; t D 0;

1
n2
k0i0Kai0Kzi iu

�
i1; t D 1;

n2�.2;2/ � h2z; (54)

n�.2;1/ �
1

nh
dz
z

; (55)

p
nˇ

.2;2/
2 �

1

n3=2h
daC2
0 h

dz
z

; (56)

ˇ
.2;2/
1 �

1

n2h
daC2
0

; (57)

ˇ
.2;1/
1 �

1

n2h
daC2
0 h

dz
z

; (58)

n�
.2;2/
2 �

1

nh
daC2
0

; (59)

p
n�

.2;2/
1 �

1

n3=2h
.daC3/=2
0

; (60)
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p
n�

.2;1/
1 �

1

n3=2h
.daC3/=2
0

: (61)

Some of the numbered equations above were already shown to be� 1=�n in lemma F1. The remain-

ing conditions are implied by

.3C da/�1 > 2�0.da C 2/C 2�zdz � 2; (62)

.3C da/�1 > 2�0.da C 2/ � 1; (63)

.3C da/�1 > .da C 3/�0 � 2; (64)

which follow from assumption S. �

Lemma F3. Using the same notation as in lemma F1, for some 0 < J <1 and s D 0; 1,

sup
y2Y

1

nhsC1CJs

nX
iD1

ˇ̌
Kais�

�
i fI i .y/ � E.y/g

ˇ̌
sup
z2Z

ˇ̌
Op.z/ � p.z/

ˇ̌J
� 1=�n:

Proof. By lemma E3, the stated result is implied by ˛n=hs decreasing to zero at a polynomial rate

since for any polynomial ��n then ��n .˛n=hs/J � 1. The requirement that ˛n=hs decrease to zero

at a polynomial rate is guaranteed by �s < min
˚
2�z; .1��zdz/=2

	
, which was assumed in assump-

tion S. �

Lemma F4.

sup
z2Z

ˇ̌̌̌
ˇ Op.z/ � p.z/ �

Or.z/ � r.z/

f .z/

J�2X
jD0

�f .z/ � Of .z/

f .z/

�j
� p.z/

J�1X
jD1

�f .z/ � Of .z/

f .z/

�j ˇ̌̌̌ˇ � ˛Jn :
Proof. From the recursion of f= Of D 1C .f � Of /= Of , we have f= Of D

PJ�1
jD0

˚
.f � Of /=f

	j
C˚

.f � Of /=f
	J
f= Of . Therefore, the LHS in the lemma statement is bounded by

sup
z2Z

ˇ̌̌̌
ˇ� Or.z/ � r.z/

f .z/

��f .z/ � Of .z/

f .z/

�J�1 f .z/
Of .z/
C

�f .z/ � Of .z/

f .z/

�J f .z/
Of .z/

ˇ̌̌̌
ˇ:

Apply lemmas E3 and E4. �

Let Nf .z/ D E Of .z/, Nr.z/ D E Or.z/, Of � D Of =f , Or� D Or=f , Nr� D Nr=f , Nf � D Nr=f .

Lemma F5. For given j; J , let ƒj be the collection of vectors ` of dimension four containing non-

negative integers satisfying `1C `2 � j and `1C `2C `3C `4 < J . Then for all sufficiently large
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n and any 1 � j < J and some constants Cj` independent of n; z,

sup
z2Z

ˇ̌̌
f Op.z/ � p.z/gj �

X
`2ƒj

Cj`f Or
�.z/ � Nr�.z/g`1fNr�.z/ � p.z/g`2f Of �.z/ � Nf �.z/g`3f Nf �.z/ � 1g`4

ˇ̌̌
� ˛Jn :

Proof. Follows directly from lemma F4 combined with the multinomial theorem. �

Lemma F6. For s D 0; 1, supy2Y

ˇ̌
OS s.yI Op/ � NS s.yI Op/ � OS s.yIp/C NS s.yIp/

ˇ̌
� 1=�n:

Proof. Let J be sufficiently large as in lemma F3. Then, expand the LHS of the lemma statement

to order J using the mean value theorem to obtain an upper bound of (34). The second term in

(34) is covered by lemma F3 and the first term in (34) is dealt with in lemma F1, using lemmas F4

and F5. �

Lemma F7. supy2Y

ˇ̌
NS 0.yI Op/ � NS 0.yIp/

ˇ̌
� 1=�n:

Proof. The proof is entirely analogous to that of lemma F6, albeit using lemma F2 instead of lemma F1,

and is hence omitted. �

Below we will write Ss.yIp/ for Ss.y/ D Ss.yI a�; v�/ for s D 0; 1.

Lemma F8.

sup
y2Y

ˇ̌
OS 0.yIp/ � S0.yIp/

ˇ̌
� 1=�n: (65)

Proof. By standard kernel estimation theory, the squared LHS in (65) is� h40C 1
ı
nh
1Cda
0 � 1=�2n

by assumption S. �

Lemma F9.

sup
y2Y

ˇ̌
OS 0.yI Op/ � S0.yIp/

ˇ̌
� 1=�n: (66)

Proof. The LHS in (66) is bounded above by the sum of

sup
y2Y

ˇ̌
OS 0.yI Op/ � NS 0.yI Op/ � OS 0.yIp/C NS 0.yIp/

ˇ̌
; (67)

sup
y2Y

ˇ̌
NS 0.yI Op/ � NS 0.yIp/

ˇ̌
: (68)

sup
y2Y

ˇ̌
OS 0.yIp/ � S0.yIp/

ˇ̌
; (69)

Apply lemmas F6 to F8. �

Lemma F10. For all y 2 Y, f NS 1.y; Op/� NS 1.y; p/gS0.1; p/ D f NS 1.1; Op/� NS 1.1; p/gS0.y; p/:
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Proof. Trivial. �

Lemma F11. Let OH .yI Op/ D
OOH .yja�; v�/ and H.yIp/ D H.yja�; v�/. Then

sup
y2Y

ˇ̌̌̌
OH .yI Op/�H.yIp/�v�

˚
OS 1.yIp/ � S1.yIp/

	
S0.1Ip/ �

˚
OS 1.1Ip/ � S1.1Ip/

	
S0.yIp/

S20 .1Ip/

ˇ̌̌̌
� 1=�n: (70)

Proof. For the remainder of this lemma, let '� mean that the left and right hand sides differ by a

term � 1=�n, uniformly in y. By lemma F9,

OH .y; Op/ '�
S0.yIp/S0.1Ip/C v

�˚ OS 1.yI Op/S0.1Ip/ � OS 1.1I Op/S0.yIp/
	

S20 .1Ip/
:

Since by lemma F6 OS 1.yI Op/ '� OS 1.yIp/C NS 1.yI Op/� NS 1.yIp/, it follows from lemma F10 that

OH .y; Op/ '�
S0.yIp/S0.1Ip/C v

�˚ OS 1.yIp/S0.1Ip/ � OS 1.1Ip/S0.yIp/
	

S20 .1Ip/
: (71)

Claim (70) then follows by subtracting and adding S1.yIp/ and S1.1Ip/ in the numerator of (71).

�

Appendix G. Weak Convergence

Let OS s.y/ D OS s.yIp/. We first show the weak convergence of OG�ns.�/ D
q
nh
2sC1Cda
s

˚
OS s.�/�

E OS s.�/
	

in L1.I/, where I is an arbitrary compact subset of R. Let !nsc.x; y; z; p/ D w.z/1.x D

0/1.y � c/Kf.a� � a/=hsgk.s/f.v� � p/=hsg=
q
h
1Cda
s and consider

Fns D Fns.I/ D
˚
.x; y; z; p/ 7! !nsc.x; y; z; p/ W c 2 I

	
:

Define Ens by Ens.x; y; z; p/ D
ˇ̌
Kf.a� � a/=hsgk.s/f.v� � p/=hsg

ˇ̌ıq
h
1Cda
s so that it is an

envelope function ofFns . Below we will write Ens.a; p/ for Ens.x; y; z; p/ given that Ens.x; y; z; p/

depends only on a; p.

Lemma G1. For s D 0; 1, EE2ns.ai ;pi / � 1. Also, for any � > 0, E
�
E2ns.ai ;pi /1

˚
Ens.ai ;pi / >

�
p
n
	�
� 1.

Proof. The first statement follows from a change of variables and assumption R. The second state-

ment follows from 1
˚
Ens.a; p/ > �

p
n
	
� 1

˚
supt1;t2 jK.t1/k

.s/.t2/j > �

q
nh
1Cda
s

	
D 0 for

sufficiently large n by assumption S. �
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Lemma G2. For any ın � 1 and s D 0; 1,

sup
jc�c�j�ın

E
h
Ixi

˚
1.y i � c/ � 1.y i � c

�/
	
K
�a� � ai

hs

�
k.s/

�v� � pi
hs

�i2ı
h1Cdas � 1:

Proof. The LHS of the lemma statement is bounded by twice of

sup
jc�c�j�ın

E
h
1
˚
min.c; c�/ < y i � max.c; c�/

	
w.zi /K

�a� � ai
hs

�
k.s/

�v� � pi
hs

�i2ı
h1Cdas

� Cın sup
y;z;p

fyzp.y; z; p/ � 1;

where C is a constant and fyzp is the density of y i ; zi ;pi . �

Lemma G3. For s D 0; 1, Fns is a Vapnik–Cervonenkis (VC) class with VC index uniformly

bounded in n.

Proof. Let J D fy 7! 1.y � c/ W c 2 Ig and let �ns.x; z; p/ D 1.x D 0/w.z/K
˚
.a� �

a/=hs
	
k.s/

˚
.v��p/=hs

	
=

q
h
1Cda
s . Then, by van der Vaart and Wellner (1996, lemma 2.6.18), the

VC index of Fns D �ns � J D f�ns NJ W NJ 2 J g is bounded by the VC index of J times 2 minus 1.

Therefore, the VC index of Fns is bounded and independent of n, because J is a VC class that does

not depend on n. �

Lemma G4. For s D 0; 1, OG�ns
w
! G�s in L1.R/, where G�s is a mean–zero Gaussian process.

Proof. Convergence of finite marginals easily follows by a central limit theorem. Now, for ` D 1; 2,

let F`
ns;ı

be a set defined byn
.x; y; z; p/ 7!

˚
!nsc.x; y; z; p/ � !nsc�.x; y; z; p/

	`
W jc � c�j < ı; !nsc ; !nsc� 2 Fns.I/

o
Since

˚
1.z 2 Z; x D 0; y � c/ � 1.z 2 Z; x D 0; y � c�/

	` is left– or right–continuous for

every c; c� and since I is separable, F`
ns;ı

contains a countable subclass G `
ns;ı

such that for every

� 2 F`
ns;ı

there exists a sequence f�j g � G `
ns;ı

with �j .x; y; z; p/ ! �.x; y; z; p/. Therefore,

by the same reasoning as van der Vaart and Wellner (1996, example 2.3.4), F`
ns;ı

for ` D 1; 2 is a

measurable class for every ı > 0. Therefore, it follows from lemmas G1 to G3 and van der Vaart and

Wellner (1996, theorem 2.11.22) that OG�ns
w
! G�s in L1.I/. Since I is an arbitrary compact set in

R, we know by van der Vaart and Wellner (1996, theorem 1.6.1) that OG�ns
w
! G�s in L1.I1; I2; � � � /,

where fIj g is an increasing sequence of compact sets such that [jIj D R. Finally note that for all

n, OG�ns;G�s 2 L1.R/ � L1.I1; I2; � � � /. �
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Lemma G5. OG�n1.�/� OG�n1.1/G.�ja�; v�/
w
! G�.�/ in L1.R/, where G� is a mean–zero Gaussian

process with the covariance kernel given by C in (20).

Proof. By a central limit theorem, OG�n1.1/G.yja�; v�/
d
! ‰G.yja�; v�/ for a mean–zero normal

random variable‰ . SinceG.�ja�; v�/ is uniformly continuous in I, where I is an arbitrary compact

set in R, we have OG�n1.1/G.�ja�; v�/
w
! ‰G.�ja�; v�/ in L1.I/. Therefore, by van der Vaart and

Wellner (1996, theorem 1.6.1), we have OG�n1.1/G.�ja�; v�/
w
! ‰G.�ja�; v�/ in L1.I1; I2; � � � /,

where fIj g is an increasing sequence of compact sets such that [jIj D R. Now note that for all n,
OG�n1.1/G.�ja�; v�/ and ‰G.�ja�; v�/ are in L1.R/ � L1.I1; I2; � � � / and the lemma statement

follows from the continuous mapping theorem. �

Lemma G6. For s D 0; 1,

sup
y2Y

ˇ̌̌̌
E
˚
Kaisk

.s/
is I i .y/

	
� @svS0.y/ �

h2s�2

2
tr
˚
@sv@bb|S0.yI a

�; v�/
	ˇ̌̌̌
�
1

�n
:

Proof. This is nothing but a standard kernel bias expansion after noting that EfI i .y/jai D a;pi D

pg D S0.yI a; p/=fap.a; p/. �

Appendix H. Semiparametric Estimation

Let OOp.z/ D OOrL.z/=
OOfL.z/ and redefine Op.z/ D OrL.z/=

OfL.z/ (compare with (15)), where8̂̂<̂
:̂

OOfL.z/ D n
�1 nP

iD1
OKzLi ; OOrL.z/ D n
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for some ��n increasing as fractional power of n.
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Proof. Note that both OOfL.z/ �
OfL.z/ and OOrL.z/ � OrL.z/ can be expanded as
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for bounded �i .
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p
n. For 1 � j � J � 1, note that for any 1 � `1; : : : ; j̀ � dz ,

sup
z2Z

ˇ̌̌̌
E

�
K
.j /
zLi�i

jY
tD1

.z`t � zi`t /

�ˇ̌̌̌
�

1

h
max.0;j�2/
z

; sup
z2Z

ˇ̌̌̌
V

�
K
.j /
zLi�i

jY
tD1

.z`t � zi`t /

�ˇ̌̌̌
�

1

h
2jC1
z

:

Consequently, analogous to lemma E2, the j–th term in (72) is for j � 2 of order no greater than
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Finally for j D 1 note that by standard kernel theory for any function � 2 F1,
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Hence it follows that as in lemma F4
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for some ��n increasing as a fractional power of n. �
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Proof. We have to deal both with the presence of OOpi in lieu of Opi and with O�
|
ai in lieu of �|

0 ai .

Since the former is more difficult than the latter, we shall establish below that
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where the remaining results can be established similarly but more simply. We again use lemma B3

repeatedly. By the mean value theorem, the LHS average in (73) can be expanded as
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The last term in (74) is of order h�s�1�Js n�J=2 (uniformly in y) which, for sufficiently large J , is
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Appendix I. Proofs of Theorems

Proof of Theorem 1. Part (i) follows from lemma A2 and assumption E. For (ii), please recall that

the LHS in (6) was shown to be identified in JPX11. �

Proof of Theorem 2. It follows from lemma A1 and assumption I that gfx�;Qujv.��jVt /g !  �.

Identification of gfx�;Qujv.��jVt /g follows from the fact that Vt 2 D.x�/. �

Proof of Theorem 3. It follows from (10) and the monotonicity of g. �

Proof of Theorem 4. By lemma F11,
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:

The stated result then follows from lemmas G5 and G6. �
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method; see e.g. Van der Vaart (2000, theorem 20.8). In particular, by Van der Vaart (2000, lemma
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Proof of Theorem 6. First consider OC. We have
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By lemma F9 and as in the proof of theorem 4, we have supy2Y j
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Therefore, Opi ; OS 0.y/; OS 0x in (77) can be replaced with pi ; S0.y/; S0x without changing the (uni-

form) probability limit of OC. Then, standard kernel estimation theory the uniform consistency of
OC.

For OS
.1/
s , let NS
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.1/
s with Opi replaced with pi . Noting that supy2Y jkf.y �
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�

Proof of Theorem 7. Redefine OOH .�ja�; v�/ in (17) as using a|

i 
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i �0 in lieu of ai and zi . Let
OOOH .�ja�; v�/ be identically defined but using O
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which follows from lemma H2. �
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