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1. Idea and context

We consider English auctions with exogenous entry and symmetric bidders under the independent
private values (IPV) paradigm in which the number of potential bidders n and some bids are observed.

Since this is an English auction, there is no one–to–one mapping between bids made by a given
bidder and his valuation as there would be in a symmetric sealed bid IPV auction without a reserve
price. Indeed, bidders can continue to submit bids after they have submitted one or may not submit
a bid at all because the current bid level already exceeds their private value.

We assume that bidders can only select bids from a prespecified finite set. We focus on the
simplest case in which bids belong to f�; 2�; : : :g with � > 0, but this is not essential. Haile and
Tamer (2003, HT) consider the possibility that there is a minimum positive bid increment, but HT’s
results apply in our environment, also. Like HT, we allow for jump bidding. From here on, we will
discuss HT’s methodology in the context of our environment. If � > 0 then the bidders’ value
distribution is only partially identified.1 Indeed, HT obtain bounds on the unknown distribution
function F of private values which, both in HT and here, is assumed to be continuous.2 HT then add
a strict pseudoconcavity assumption on the pseudoprofit function Q.r/ D rf1 � F .r/g to obtain
bounds on the optimal reserve price.3

Like HT, we think about the problem of setting an optimal reserve price in a hypothetical second
price auction with � D 0. The rationale for this is, as HT have shown, that an English auction
with a reserve price and no minimum bid increment is revenue–equivalent to a second price sealed
bid auction with the same reserve price under the behavioral assumptions made in HT, as long as
the English auction can be represented by a “feasible auction mechanism.”4 However, the revenue
equivalence theorem (Myerson, 1981) does not imply that a second price auction is optimal. We
revisit these issues in section 2 and appendix A.

Although there is precedence for HT’s pseudoconcavity assumption (which we do not need) in
the literature, there are many plausible value distributions that do not satisfy it and there is no clear

1Athey and Haile (2002) contains identification results on English auctions.
2In view of Chesher and Rosen (2018), HT’s bounds are not entirely sharp because they do not exploit correlation

among bids. This is however irrelevant for the main ideas put forth in this paper. We thank Laurent Lamy and Francesca
Molinari for pointing this out to us.

3The pseudoprofit function is the seller’s profit as a function of the reserve price if there is only one bidder. We set
the seller’s value to zero for presentational simplicity.

4A feasible auction mechanism requires a Nash equilibrium in the bidding game (Myerson, 1981, p62). The case
� D 0, both here and in HT, rules out the bulk of situations giving rise to jump bidding in equilibrium. For instance,
Avery (1998) requires affiliation, whereas we follow HT in assuming independence. Further, Daniel and Hirshleifer
(1998) is mostly about a scenario in which bidding is costly. Daniel and Hirshleifer (1998) do provide an example
of a Nash equilibrium with zero costs, no minimum bid increment, and symmetric bidders in which there exists an
equilibrium with jump bidding, but it is both fragile and does not satisfy HT’s requirement that bidders will not let
rivals win at a price that they are willing to beat. In fact, we are not aware of an example in which there are jump bids in
equilibrium with symmetric bidders, exogenous entry, independent private values, no minimum bid increment, and in
which HT’s behavioral assumptions are satisfied.
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path to usable bounds on the optimal reserve price in a second price auction from bounds on F

without it: example 1 in section 2 and figures 5 and 6 in section 4 contain such distributions.
Further, bounds on the optimal reserve price are interesting, but they are of limited use to a

seller faced with the problem of choosing a reserve price: she will still have to pick a single number.
Indeed, as we show in section 4, if the number of bidders is small then expected revenue can vary
substantially with the choice of reserve price, even if one were only to consider reserve prices that
belong to the HT identified set. The question of interest in this paper, then, is how to pick a reserve
price if the value distribution F is only partially identified.

This question already has an answer in Aryal and Kim (2013, AK) in the somewhat different
case in which only the winning bid is observed. Their idea can be summarized as follows. AK
assume that the winning bid is no greater than the highest value. So, the n–th power of F is
bounded above by the distribution function of the winning bid. They further assume that the seller is
ambiguity–averse (Gilboa and Schmeidler, 1989), but not risk–averse, which means that the seller’s
objective is to maximize minimum expected revenue over all value distributions.5 AK’s results show
that if candidate distribution F1 stochastically dominates alternative F2 then the expected revenue
associated with F1 is no less than that with F2 for any reserve price. Therefore, a lower bound to
expected revenue obtains when the value distribution is set equal to its upper bound. In other words,
the value distribution FAK that corresponds to the smallest expected revenue is such that F n

AK equals
the distribution of the winning bid. Therefore, the seller can choose a reserve price as though FAK

were the true value distribution.

The methodology we propose can be used in the environment analyzed in AK, but we choose
to develop our methodology in an environment similar to HT’s world which is methodologically
more interesting for our approach: our methodology uses both the upper and the lower bounds of the
identified set but in AK’s environment the lower bound is always trivial.6 AK’s methodology can
be extended to HT’s case, also. Indeed, one can simply look at the worst possible value distribution
that is consistent with HT’s bounds, i.e. the HT upper bound of the value distribution. As far as we
know, this has not been done, but it is not difficult. From here on, we will take that leap and discuss
AK’s approach in the context of HT’s conditions only.

A more general way of addressing the reserve price selection problem is to express it in terms of
a decision–theoretic framework by assuming that a seller chooses the reserve price to maximize
minimum expected revenue where the minimum is taken over all value functions F that belong to
the HT identified set and whose (relative) entropy is no less than some lower bound E� specified
by the seller. In other words, we cast the seller’s decision problem in the same framework as AK
but we impose an extra entropy regularization condition; without the regularization AK’s solution

5She is not risk–averse, because she is still trying to maximize expected revenue instead of the expectation of a
strictly concave function of revenue. In AK, the seller is ambiguity–averse because she does not like the ambiguity
resulting from the fact that the value distribution is unknown.

6Further, the upper bound of the identified set in AK’s environment is greater than that in HT’s.
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exclusively depends on the upper bound of the distribution function of valuations. With this setup,

the choice of E� reflects the seller’s attitude about ambiguity and plausibility: she balances an
aversion to ambiguity with a desire to rule out distributions she considers implausible as measured
by the entropy. It allows her to provide a guess of the value distribution known as a reference
distribution (which we take to be a uniform) and only permit deviations within a certain distance
from the reference distribution, where the distance is measured by (minus) the (relative) entropy, i.e.
the Kullback–Leibler divergence criterion. There is hence a shrinkage aspect to this approach in
that (absent point identification in the original problem) the choice of distribution function is shrunk
towards the reference distribution. The value of E� determines the tradeoff between ambiguity
aversion and plausibility: for E� D �1 one obtains AK’s pure maxmin approach and with E�

chosen maximally one obtains maximum entropy, a method from the information theory literature
(see e.g. Topsøe (1979), Harremoës and Topsøe (2001), Grünwald and Dawid (2004, GD)); the fact
that the solution is sensitive to the choice of E� is a natural consequence of partial identification.

A detailed discussion of this entropy–regularized decision–theoretic approach can be found in
appendix B. In the main text we consider the special case in which the seller chooses E� maximally,

i.e. uses the maximum entropy principle. Below we discuss the choice of a reference distribution
and explain why the (maximum entropy) special case is particularly interesting.

We start with the choice of a reference distribution. As noted, one possibility is to ask the seller
for a guess of what the true value distribution looks like. The need to pick a reference distribution
can be compared to the need in Bayesian decision theory to specify a prior distribution, but the
demand here is less onerous: Bayesian decision theory would require the seller to specify a prior
over the set of value distributions, which is probably an unreasonable amount of information to elicit
from a seller.

A second possibility is to start with a more restricted model, in which there is point identification,

e.g. by adding behavioral assumptions. One can then estimate the restricted model which produces
an estimated value distribution which can be used as a reference distribution in our procedure,
albeit that the inference methods proposed in this paper would need to be extended to accommodate
sampling errors in the reference distribution.

There are two reasons for setting the reference distribution to a uniform as the default. First, it
simplifies notation noting that the extension to other reference distributions is tedious but straightfor-
ward, albeit that the maximum entropy solution will then not be piecewise linear, as we will show it
is here.7 Second, it is a natural choice in the information theory framework since it means that we
would be maximizing Shannon’s entropy subject to the identified bounds of the value distribution.

Note that the uniform distribution reflects our ex ante ‘ignorance’ about what the value distribution
should look like, which is in line with the rationale of Occam’s razor.

7The maximum entropy distribution function will be piecewise linear; the corresponding density function hence
piecewise constant.
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We now discuss why the maximum entropy solution is of particular interest. We offer three
arguments. First, the maximum entropy principle can be thought of as a special case of robust
control theory (e.g. Hansen and Sargent, 2008) and it can be understood as a minmax decision with
a specific loss function. Indeed, Topsøe (1979), Harremoës and Topsøe (2001), and GD inter alia
provide a justification of the maximum entropy principle from the usual minmax perspective of
decision theory. GD is particularly relevant because they show that choosing an entropy–maximizing
distribution from a set C is equivalent to selecting a robust Bayes act against C (or C–minmax act)
for the log loss decision problem. Indeed, in a statistical game in which a decision maker specifies a
distribution from C and nature reveals values from an unknown distribution (that may or may not
belong to C), maximizing entropy over C is a dual decision to considering the worst–case expected
log loss among C and minimizing it. In our context, C corresponds to the identified set of the value
distributions, albeit that the GD results do not cover the case of inequality restrictions.8 One could
argue that this statistical game is not directly relevant to the seller, who only cares about expected
profits. But as argued earlier, the maximum entropy solution can be justified from the perspective of
expected profit maximization, also, by introducing entropy-based regularization; see appendix B.

This approach is similar in spirit to Hansen and Sargent (2008), who consider a constrained minmax
approach, where entropy is used to control for the admissible level of misspecification.

Second, it is well–known in the information theory literature that the maximum entropy principle
constitutes the unique rule of inference that satisfies a certain set of axioms (e.g. Golan, 2018). The
axioms are as follows: (i) the solution must be unique; (ii) the solution must be invariant to the
transformation of the coordinate system; (iii) breaking the problem into smaller pieces should not
change the solution; i.e. solving two problems on Œ0; 1=2� and Œ1=2; 1� separately should yield the
same solution as solving one problem on Œ0; 1�; (iv) solving for a joint distribution or for a marginal
and a conditional distribution should yield the same answer; (v) without extra information, the
solution should be the same as the prior. So, in the present context, the maximum entropy value
distribution F � is the only solution that satisfies all five axioms.

Third, the maximum entropy principle has several practical advantages. For instance, it is easy
to implement, offering a solution that is analytically tractable. Further, it is straightforward to add
any additional information or insights the seller might have, or indeed information or insights that
can be inferred from the seller’s actions, such as the reserve price she chose to set in the observed
auctions.9

Our maximum entropy method yields a unique solution F � that satisfies the HT distribution
8It is outside the scope of this paper to generalize the GD theory to the case of inequality restrictions.
9For instance, if � D 0 and Q is strictly pseudoconcave then r� satisfying Q0.r�/ D 0 would be the unique

optimal reserve price. So, when the reserve price r� the seller chose to set is observed, imposing Q0.r�/ D 0 in the
maximum entropy optimization problem could be a reasonable, albeit imperfect, choice. We thank Peter Newberry for
this suggestion.
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function bounds and is piecewise linear.10 The maximum entropy value distribution F � then implies
an optimal reserve price r�, which is necessarily between the HT bounds whenever HT’s strict
pseudoconcavity assumption is satisfied. However, the maximum entropy distribution itself need
not satisfy the pseudoconcavity assumption.

Neither AK’s methodology nor our maximum entropy approach requires the pseudoconcavity
assumption to select a reserve price. However, absent strict pseudoconcavity, Myerson (1981)’s
regular case assumptions are violated and a second price auction and Myerson’s optimal auction
may no longer be revenue–equivalent.

Having the maximum entropy value distribution in hand, one can use it to implement Myerson’s
optimal auction mechanism instead of simply choosing a reserve price in a second price auction,11

which is not possible with either HT or AK. Indeed, we discuss optimal auctions in appendix A.

However, as noted in appendix A, the gain from doing this is typically small and Myerson’s
mechanism is likely to be too cumbersome to implement in a real world environment. Hence, we
focus on second price auctions in the body of the paper.
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Figure 1: Comparison of AK’s and ME’s choice of the value distribution when n D 2, � D 0:1,
and the true value distribution is uniform. The left panel shows the distribution functions and the
right panel shows the probability mass function of AK and the probability density function of ME.

Both AK and our paper use HT’s framework to obtain bounds on the value distribution, but it
is largely irrelevant for our approach how the bounds are obtained. Indeed, the ME principle we
advocate can be applied whenever the distribution function of interest is only partially identified.

For example, Coey et al. (2017) have shown how to bound the value distribution function when
10If the seller had additional information that was added as restrictions then the ME solution might not be piecewise

linear.
11Myerson assumes continuity of the value density function, but his results extend to our discontinuous maximum

entropy value density.
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bidders do not have to be symmetric. This is a different framework from HT’s, and hence AK’s
monotonicity results do not apply. Further, auctions and reserve prices are not the only examples
where partial identification of a distribution function arises. For instance, Larsen (2014) studies
bargaining games in the used car industry. Larsen obtains partial identification of the seller’s value
distribution. He then considers welfare measures to investigate the bargaining efficiency problem.

In principle, one can consider maximizing the minimum welfare, but some of the measures lack
the monotonicity property that makes AK’s solution computationally feasible. In contrast, the ME
principle remains simple to apply: it can serve as a useful summary in the discussion of optimal
market designs.

Aside from the philosophical differences between AK’s approach and ours, it is evident that
AK’s approach leads to simpler estimation and inference procedures since one only needs to estimate
a distribution of observables (the winning bids) nonparametrically. On the other hand, the reason
that our approach leads to more complicated estimation and inference procedures is, in part, that we
use more information. Indeed, HT use multiple distribution function bounds and pick the tightest
ones.12 With AK’s approach (in our environment) one would, as noted, only use the HT upper
bound on the distribution function. Maximum entropy uses the HT upper and lower bounds, plus
an information criterion. Indeed, maximum entropy entails a constrained optimization problem,

which leads to interesting inference problems as will become apparent below. Further, the entropy–
maximizing value distribution is continuous, whereas the value distribution used for AK’s reserve
price is discrete, or perhaps more precisely: the AK value distribution results from the discrete limit
of a sequence of continuous value distributions: the value distribution must be continuous for the
bounds in HT to apply. Figure 1 shows an example, in which the true value distribution is uniform.

Another difference between AK’s approach and ours arises when the reserve price in the observed
auctions is binding: the AK approach never results in an optimal reserve price that is less than what
was used in the data used for estimation; this is in contrast to our approach.13 If there are many
auctions without positive bids in the data then AK’s optimal reserve price is the same as the reserve
price observed in the data,14 which we think is extreme. In contrast, the maximum entropy optimal
reserve price can be as small as half the reserve price used in the data. We discuss this issue in more
detail in section 2.

But neither method generally dominates the other or, put differently, either method is better than
the other depending on which property is deemed preferable. If the seller is ambiguity–averse but not
risk–averse then AK is the method of choice. In other cases, the maximum entropy has a lot going
for it. Either method can produce a higher expected revenue under different circumstances. Indeed,

these are not the only two possibilities. In other work (Jun and Pinkse, 2016) and a different problem,

12These are essentially ‘intersection bounds.’
13We thank Andres Aradillas–Lopez and Vijay Krishna for suggesting that we look into the effect of the reserve price

used in the data on results.
14We are using a single reserve price here, but similar issues arise when the reserve price in the data varies by auction.
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we pursue the possibility of imposing a (Dirichlet process) prior on the class of distribution functions,
but that approach comes with unpleasantries: it is painful to obtain a solution and it requires the
arbitrary choice of input parameters. Since different reserve prices are optimal for different value
distributions (consistent with the data), which method is better is a matter of philosophy, not
econometrics. In section 4 we explore some differences between AK’s approach and ours in some
examples.

In these examples we simulate the population and consider both ‘regular’ and ‘irregular’ cases,
i.e. cases in which HT’s strict pseudoconcavity assumption is satisfied and cases in which it is
violated. In the regular cases our results are not surprising: HT’s bounds for the optimal reserve
price were well–defined but they are too wide to help the seller select a reserve price. Both AK’s
solution and ours are always contained in the HT bounds in the regular case. For the irregular case,
we consider two different scenarios: one where the value distribution is regular and unimodal but
the function Q has a flat area, and the other in which the value distribution is bimodal and Q has
two distinct local maxima.

HT’s results do not apply in the irregular case, but if one nevertheless follows their procedure
here one obtains uninformative bounds or nonconvex identified sets for the optimal reserve price,
depending on the shape of the Q function. Both AK’s approach and ours produce a point decision,

but neither dominates the other in terms of true expected revenue, which is in line with the theory.

Again, the choice is between insurance against the worst case expected revenue (AK) and the most
‘reasonable’ value distribution as defined by the entropy criterion (JP).

The discussion has thus far focused on the case in which the distributions of observables
are known, in which case F � and r� can be determined. In practice, however, F �, r�, and the
corresponding expected revenue would have to be estimated. Addressing issues resulting from
estimation error can be relevant to the seller, also. She may, for instance, only wish to deviate from
established practice if the ME reserve price is significantly different from the one she currently uses,
or indeed if the corresponding expected revenue is significantly higher. For the purpose of inference,
we assume that the HT bounds can be

p
N –consistently estimated, and we express the distribution

of the objects of interest in terms of the distribution of the estimators of the bounds, where N is
the number of auctions observed; all of HT’s distribution function bounds are transformations of
distribution functions of observables. We start with the estimation of the ME value density function
f �, which is piecewise constant since F � is piecewise linear.

We obtain an estimator of f � that is at worst
p
N–consistent: if no constraints are binding

in the ‘population’ then convergence is arbitrarily fast, otherwise the rate is
p
N . However, even

under
p
N–convergence asymptotic normality does not obtain even if the bound estimates were

asymptotically normal since the limit distribution depends on which constraints are binding in the
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population.15 We propose a constraint selection procedure which resembles the moment selection
procedure of Andrews and Soares (2010, AS) inter multa alia, but differs in three important respects:
(a) in AS uniform inference is an important objective but our goal is to derive an expression for the
limit distribution of the estimator of f �; (b) AS is intended for the case of set identified parameters
whereas f � is unique; (c) in AS moment equalities and inequalities are all information available,
whereas here we have an optimization problem with a known concave objective function with
estimated inequality constraints. Like AS, our constraint selection procedure requires a sample–
size–dependent input parameter. We pair the constraint selection procedure with a simulation method
to obtain a procedure that is (pointwise) asymptotically similar for some value distributions F �

and conservative for others. There is nothing that makes our estimation problem unique to auction
environments or indeed to the maximum entropy problem, so our new theoretical results should
have wider application. For example, in a game–theoretic discrete choice model where moment
inequalities are available to partially identify payoff parameters, our inference methods can be used
to construct a confidence interval for the payoff for each player when the only information available
is that the payoff parameters satisfy the moment inequalities. For a nonzero length identified set,
this problem translates into two separate constrained optimization problems: one for the minimum
and one for the maximum.

We further obtain results for the optimal reserve price and the corresponding expected revenue.
Since the expected revenue function corresponding to the ME value distribution F � need not be
strictly pseudoconcave, the ME reserve price may not be unique. However, we show that for F � the
set of reserve price values for which expected revenue is maximized is at most finite: each maximizer
can be consistently estimated.

Given that there can be multiple expected revenue maximizers, one still needs to pick one. Note
that all elements in the solution set yield the same expected revenue for the ME value distribution
in contrast to, say, the HT identified set. Therefore, by the entropy criterion, all elements in the
solution set are equivalent. For most purposes, simply choosing a reserve price that maximizes
the estimated expected revenue will be satisfactory. Doing so has the advantage that one does not
have to estimate the entire set of maximizers, which entails the choice of an input parameter: this
is our recommended approach. If one insists on estimating the entire set then one can introduce
tie breakers. For example, one could compare the worst case loss for each maximizer. A more
sophisticated alternative approach is to search for a value density that maximizes entropy among the
distributions that are orthogonal to the original ME density f �. Finally, one can simply focus on the
smallest element of the set of ME optimal reserve price values. This approach can be justified from
a welfare perspective.16

If one intends to construct a confidence interval for the optimal reserve price or maximum
15The bounds estimators are not generally asymptotically normal, either, because they are minima of several possibly

asymptotically normal quantities.
16The seller is indifferent and the buyer gains if the probability of a sale increases with the same expected revenue.
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attainable expected revenue for the ME distribution then our recommended approach will not suffice.
Hence, for the purpose of inference on the optimal reserve price, we focus our efforts on the simplest
approach, i.e. choosing the smallest element in the set of ME optimal reserve price values. We show
that our estimator of the smallest ME optimal reserve price has similar statistical properties to our
estimator of f �: a convergence rate no worse than

p
N and a limit distribution that is not normal,

but can be simulated. Our estimator of expected revenue, however, is
p
N–consistent in all cases.

For expected revenue a simulation–based method can be used to conduct inference, also.

Our paper is organized as follows. In section 2 we set up the environment. In section 3, we derive
the formulation of the ME solution of f �. In section 4 we use examples to compare HT’s, AK’s, and
our approaches. Section 5 contains an empirical illustration. Then in section 6 we develop statistical
properties of our estimator of f �, the ME optimal reserve price and expected revenue. Section 6
also contains a modest simulation study.

2. Preliminaries

As mentioned in section 1, we consider an English auction with symmetric bidders and exogenous
entry under the IPV paradigm, in which there is a minimum bid increment � > 0. Unlike HT, we
assume that bid increments are multiples of �, i.e. one of �; 2�; : : : , albeit that any other known
discrete scheme works, also.17 In what follows, we shall refer to HT as HT’s approach with this
additional assumption. Thus, bidders’ values v1; � � � ; vn are independent and identically distributed
(i.i.d.) draws from an unknown continuous distribution function F with positive density function f .

We assume that the potential number of bidders n is known. Throughout the paper we assume that
the support of vi is the unit interval Œ0; 1�. The text is phrased as though we observe the highest bid
of each bidder, but observing the winning bid (and the number of potential bidders) is sufficient
if one sets the unobserved bids to zero, albeit that the distribution function bounds are then wider.
Because this is an English auction, there is no one–to–one correspondence between the observed
bid and a bidder’s value. Further, since � > 0, the bid distribution is discrete.

The objective in the empirical auctions literature is typically to uncover F from the bid dis-
tribution, which is then used to obtain policy–relevant objects such as the expected revenue and
optimal reserve price. However, as HT point out, in our setup (point) identification does not obtain.

One reason is that � > 0. If � were equal to zero then F can be point identified under plausible
assumptions such as the absence of jump bidding. If � is nonzero then the bid distributions provide
bounds on F . Below we briefly review HT’s results and issues surrounding them.

It is well–known from the order statistics literature that if u1; � � � ; un are independent with
standard uniform distributions then ui Wn, the i th (smallest) order statistic, has a beta distribution with
parameters i and n� iC1, i.e. ui Wn � B.i; n� iC1/. Consequently, F .vi Wn/ has a B.i; n� iC1/

17For instance, small increments at low bid levels and large increments at high bid levels.
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distribution whose distribution function will be denoted by Hi Wn. Let Gi Wn be the distribution function
of the i th lowest bid bi Wn and let r 2 Œ0; 1� be the reserve price.

Theorem 1 (Haile and Tamer, 2003). Suppose that bidders do not bid more than they are willing to
pay and that they do not allow an opponent to win at a price that they are willing to beat. Then, for
all v 2 Œr; 1�, we have FL.v/ � F .v/ � FU .v/, where

FL.v/ D H �1
n�1Wn

˚
GnWn.v ��/

	
and FU .v/ D min

iD1;2;��� ;n
H �1

i Wn

˚
Gi Wn.v/

	
:

There are a few comments to make. First, to facilitate the discussion we assume that the number
of participants is constant across auctions: an extension to different numbers of bidders is simple
but messy. Second, the bounds in theorem 1 can be estimated. Indeed, given a sample of size
N ,

p
N –consistent estimators of FL;FU can be constructed. Further, the bounds FL;FU are step

functions because the support of bi is discrete since � > 0. Finally, the bounds on F do not say
much about the density function f D F 0, which is needed to analyze e.g. the optimal reserve price.
In this section we will be mostly concerned with the density issue.

We now turn to the analysis of the optimal reserve price in a counterfactual environment in which
� D 0 and the assumptions for the revenue equivalence theorem in Myerson (1981) are satisfied.

This is essentially the same exercise as in HT, albeit that we do not impose HT’s pseudoconcavity
assumption. As noted in section 1,18 jump bidding is effectively ruled out in this counterfactual
environment. Let Q�.r I F / be the expected revenue function in this thought experiment, i.e.

Q�.r;F / D E
˚
max.vn�1Wn; r/1.vnWn > r/

	
D 1 � rF n.r/C

Z 1

r

˚
.n � 1/F n.v/ � nF n�1.v/

	
dv: (1)

So, like HT and AK, we use data on auctions with� > 0 to study the optimal reserve price in regular
second price auctions, i.e. second price auctions with � D 0 in which the assumptions for the
revenue equivalence theorem are satisfied. This is clearly not ideal but, without further assumptions
about bidder behavior, it is the best that can be done. Indeed, with only the minimal behavioral
assumptions made in HT, AK, and here, the conditions for Myerson (1981)’s revenue equivalence
theorem are not met: for instance, the assumptions are not sufficient for the existence of Nash
equilibrium bidding strategies in English auctions.19 Conversely, if the assumptions necessary for
the revenue equivalence theorem were satisfied for the auctions in the data then point identification

18See footnote 4.
19To establish lemma 4 in their paper, HT make additional assumptions, including the feasible auction mechanism

requirement we mentioned in the introduction.
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could obtain.20

Thus, the optimal reserve price r0 satisfies

@r Q�.r0;F /

nF n�1.r0/
D 1 � F .r0/ � r0f .r0/ D 0; (2)

provided that r0 2 .0; 1/.

Solving the first order condition in (2) requires knowledge about the density function f . Even
then, the solution need not be unique. Therefore, the bounds in theorem 1 generally do not provide
much, if any, information about r0.

HT’s approach in this situation is to note that the right–hand side of (2) is the derivative of
Q.r/ D rf1� F .r/g at r0, and they restrict the function Q to be strictly pseudoconcave. This extra
assumption on the shape of Q ensures that r0 is uniquely defined and it allows them to derive bounds
on r0 from the bounds on F . This solution is defensible because similar assumptions have been
made in the auctions literature. But there are limitations: strict pseudoconcavity of Q rules out some
plausible value distributions. For instance, the distribution described in example 1 has a unimodal
density that appears to be perfectly ‘regular’ yet violates the strict pseudoconcavity assumption.

Example 1. Suppose that f .v/ D 1=.4v2/ for v 2 .1=2; �/ with � < 1 and that f is unrestricted on
Œ0; 1=2�[ Œ�; 1� except that F .1=2/ D 1=2. Then, for any v 2 .1=2; �/, we have F .v/ D 1� 1=4v

so that Q0.v/ D 0. Therefore, Q is not strictly pseudoconcave.

The density f in example 1 satisfies neither Myerson (1981, page 66)’s condition nor HT’s.
But Myerson shows that his condition is not needed for the characterization of an optimal auction
mechanism: it is simply helpful for the computation of one. In section 4 we provide more examples
using mixtures of two Beta distributions, where the corresponding function Q has two distinct local
maxima and hence is not pseudoconcave.

Recall that instead of using HT’s assumption that restricts the set of admissible value distributions,
we apply the maximum entropy principle. Letting F � be the entropy–maximizing value distribution,

our approach is to maximize Q�.r;F �/, whereas AK’s proposal is to maximize Q�.r;FU /. To highlight
the difference between the two, suppose that the reserve price used in the data is Nr > 0. Then, all
bidders with values less than Nr (and some with values greater than r) will not bid, i.e. they will
bid zero.21 Therefore, FU .r/ is flat on Œ0; Nr/, and it will be positive when the price distribution
has positive probability mass at zero. But then (1) shows that no point in Œ0; Nr/ can be the optimal
reserve price suggested by AK, unless FU .r/ D 1 for all r , since Q�.r;FU / is increasing in r 2 Œ0; Nr/.

20The requirements for Myerson’s revenue equivalence theorem are not met and point identification does not obtain
for several reasons. For starters, one cannot identify a continuous value distribution from a discrete bid distribution.
Further, if � > 0 then the winning bidder can end up paying more or less than the value of the second highest bidder:
the sequence in which bids are submitted matters. If the winning bidder wins with bid Nb then that only means that the
second highest bidder’s value is in the interval Œ Nb ��; Nb C�/. (This is not intended to be a complete list.)

21Bidders with values greater than zero may not bid because others have already bid past their value.
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So AK’s optimal reserve price cannot be less than Nr . This is not the case with the entropy approach.

As will become clear in section 3, F � is linear on Œ0; Nr/. Therefore, (1) shows that if � D FU .0/ is
large enough then the maximum entropy optimal reserve price is Nr = 2�. To put that into perspective
suppose that in 9,999 out of 10,000 observed auctions in the data with two bidders and a reserve
price equal to 1=2 there are no positive bids. So, OG1W2.r/ � 0:9999 and OG2W2.r/ D 0:9999 for all
r 2 Œ0; 1=2/. Therefore, OFU .r/ equals either 0.99 or

p
0:9999 on Œ0; 1=2/. Then AK would suggest

to keep the reserve price at 1=2 and our maximum entropy solution would suggest dropping the
reserve price to approximately 1=4.22 Keeping the reserve price at 1=2 would be optimal if the value
distribution indeed has a large mass point at zero (or something extremely close to it), but in most
other cases dropping the reserve price would be better.

3. Maximum entropy density

All we know about the value distribution is that it satisfies the bounds in theorem 1. Thus, the
maximum entropy density, i.e. the least informative density given the information provided by the
identified bounds is given by

f �
D argmin

f

Z 1

0

f .s/ log f .s/ ds subject to

8̂̂<̂
:̂

Z 1

0

f .s/ ds D 1;

8v WFL.v/ �

Z v

0

f .s/ ds � FU .v/;

(3)

where the bounds FL;FU were given in theorem 1 and F .v/ D
R v

0
f .s/ ds is continuous in v.

The optimization problem in (3) is simpler than a typical infinite–dimensional optimization
problem because the bounds FL and FU are step functions, as noted earlier. Below we reformulate
(3) as a finite–dimensional convex optimization problem.

Suppose that for some J � 2 the support of the bid distribution consists of the points 0 D ˇ0 <

ˇ1 < � � � < ˇJ < ˇJ C1 D 1. For the sake of presentational simplicity, we assume that the ǰ ’s are
equally spaced, i.e. ǰ D j�.

Lemma 3.1. The solution f � to (3) is constant on each Ij D Œ ǰ �1; ǰ / for j D 1; 2; � � � ; JC1.

Therefore, solving (3) is a finite–dimensional problem in terms of its complexity. Specifically,

(3) can be solved by finding

g�
1 ; : : : ; g

�
J C1 WD argmin

g1;:::;gJ C1�0

J C1X
j D1

gj .loggj � log�/

22Here, we assume that it is known that the support of the value distribution starts at zero. We thank an anonymous
referee for pointing this out.
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subject to

8̂̂̂̂
<̂̂
ˆ̂̂̂:

J C1X
j D1

gj D 1;

ƒ0j �

jX
kD1

gk � ‡0j for j D 1; 2; : : : ; J;

(4)

where gj D �f . ǰ �1/ and 0 � ƒ0j WD FL. ǰ / � ‡0j WD FU . ǰ �1/ � 1.23 Since g�
1 ; � � � ; g

�
J C1

sum to one, we define g� D Œg�
1 ; � � � ; g

�
J �

|
2 RJ , omitting g�

J C1. We show in appendix C that the
sign constraints are never binding, i.e. g�

j > 0 for all j .

The bounds ƒ0 D Œƒ01; � � � ; ƒ0J �
| and ‡0 D Œ‡01; � � � ; ‡0J �

| are unknown but can be esti-
mated at the parametric rate. Estimation and inference will be discussed later. The vector of bounds
will be denoted by D0 D Œƒ

|

0; ‡
|

0 �
|. When we wish to emphasize the dependence of g� on D0 we

will use the function gı to write g� D gı.D0/.

The optimization problem in (4) is a finite–dimensional convex programming problem, for
which many well–known algorithms are available (e.g. Bertsekas, 2015). In fact, since the objective
function in (4) is strictly convex (e.g. by the log sum inequality) and all constraints are linear, the
solution to (4) is unique.

The maximum entropy density function f � can be obtained from g� D gı.D0/:

f �.v/ D f �
fv; gı.D0/g D

J C1X
j D1

gı
j .D0/1.v 2 Ij / = �; (5)

where 1 is the indicator function. Consequently, the maximum entropy distribution function F � is
given by

F �.v/ D F �
fv; gı.D0/g D

Z v

0

f �
fs; gı.D0/g ds D

J C1X
j D1

1.v 2 Ij /a
|

j .v/g
ı.D0/; (6)

where aj .v/ D
�
1; 1; � � � ; 1; v=��jC1; 0; 0 � � � ; 0

�|

.24 Figure 2 shows an example using simulated
bids.

For figure 2, the bounds are estimated with S D100,000 simulated auctions with n 2 f2; 6g

potential bidders, � D 0:1, and two different value distributions. Note that the bounds depend on
the bidding strategies used. Here, bids were generated by randomly choosing among the currently
losing bidders whose values were at least equal to the current bid level plus� and assign a bid equal
to the current bid level plus � to the chosen bidder.

23The lower bound in (4) comes from the fact that F is known to be continuous such that limv" ǰ
F .v/ D F . ǰ / �

FL. ǰ /. For details, see the proof of lemma 3.1 in appendix C.
24For v 2 Ij D Œ ǰ �1; ǰ / D �Œj � 1; j /, we have F �.v/ D a

|

j .v/g
� D

Pj �1

kD1
g�

k
C .v=� � j C 1/g�

j .
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Figure 2: The HT bounds and the maximum entropy solution: the top figures are based on 100,000
simulated auctions with n D 2;� D 0:10 using Beta.0:5; 0:5/ (left) and Beta.2; 2/ (right) as the
true value distributions. The bottom figures use n D 6 with the other settings the same.

When n is larger, the lower bounds tend to be zero for a wide range of small values of v, which is
because the empirical distribution function of the largest bid tends to be zero for “small” values of v
with finite S . This becomes an undesirable issue for the upper bound: the upper bound estimated by
the usual empirical distribution function will be zero for “small” values of v. In order to avoid this
problem, we used OGi Wn.v/ D

˚PS
sD1 1.bi Wn;s � v/C 1

	
= .S C 1/, where bi Wn;s is the i th (smallest)

bid in auction s. Please note that OGi Wn is asymptotically equivalent to the usual empirical distribution
but is always positive with finite S .

As figure 2 shows, the maximum entropy density generally differs from the true value density.

This is not surprising since the true value density is not point–identified. We propose the maximum
entropy density as a representative value distribution under partial identification: by the maximum
entropy principle it is the least informative choice among the value distributions in the identified set.
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Now consider the maximum entropy expected revenue function, �.r; g�/ D Q�fr;F �.�; g�/g.

The maximizer and the maximum of �.�; g�/ are the maximum entropy optimal reserve price and
the corresponding expected revenue, respectively. As we mentioned in section 1, the maximum
entropy optimal reserve price is always contained in HT’s interval for the optimal reserve price.
However, the maximum entropy distribution itself need not satisfy HT’s strict pseudoconcavity
assumption.

4. Comparison of methods

We now compare the three approaches to the seller’s problem, namely the bounding approach of
Haile and Tamer, the maxmin approach of Aryal and Kim, and our entropy–based approach using
some examples. We draw values independently from distributions chosen by us and simulate bids,
for which we adopt the algorithm described in HT’s example 2 in their appendix B. We then compute
the identified bounds of the value distribution function using S D100,000 auctions to simulate the
objects of estimation, i.e. the true identified bounds. The bounds on the value distribution function
are then used to find the (bounds on the) reserve prices proposed by HT, AK, and the present paper.25

Therefore, the focus of this section is on making a comparison of the different approaches at the
population level; this way we highlight the fundamental differences of the different approaches. In
the discussion below, for a given value distribution function F , we shall refer to the function Q�.r;F /

defined in (1) as the profit function and to Q.r/ D rf1 � F .r/g as the pseudoprofit function.

In our experiments we use n D 2 since the reserve price has the greatest impact when the number
of bidders is small: there is sufficient competition when n is large. Note that n here is the number of
bidders in the hypothetical second price auction: the number of bidders in the data is immaterial for
the purposes of the present exercise. The results described are based on � D 0:10 unless otherwise
indicated.

For figure 3 we used Beta.0:5; 0:5/ and Beta.2; 2/ as the value distributions, resulting in strictly
pseudoconcave pseudoprofit functions, as HT requires. Figure 3 has four panels: for each of these
two distributions there is one graph for the pseudoprofit function and one for the profit function. In
each graph we draw the ‘truth,’ the (pseudo)profit function corresponding to the maximum entropy
solution and its maximizer (marked ME), the HT bounds, and the maxmin optimal reserve price,
marked AK. The punkish nature of the lower and upper bounds is due to the fact that the bounds
on the distribution function are step functions: see figure 2.26 The maximum entropy solution is
a value at which the maximum entropy profit function is maximized which, in the case of strict
pseudoconcavity, coincides with the point at which the maximum entropy pseudoprofit function
is maximized. The maxmin solution is the point at which the lower bound to the profit function

25So, what is marked as AK uses all bids, as we mentioned in section 1.
26HT choose to smooth out the bounds, but there is no information on the bounds between nodes of the distribution.
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Figure 3: Pseudoprofit (left) and profit (right) for the Beta.0:5; 0:5/ (top) and Beta.2; 2/ (bottom)
value distributions; n D 2, � D 0:1. Green represents the design and black the maximum entropy
solution. Upper and Lower show the (pseudo)profits corresponding to the upper and lower bound of
the value distribution function, respectively.

is maximal, which is always at one (or more) of the nodes. Finally, to obtain the HT bounds one
takes the AK solution and extends it left and right to the point at which the upper bound to the
pseudoprofit function attains the maximum of the lower bound.

The HT bounds for the optimal reserve price are well defined and informative in both designs
depicted in figure 3, albeit that they are too wide to be of much use. In the Beta.0:5; 0:5/ design,

maxmin yields a higher profit whereas in the Beta.2; 2/ design maximum entropy does better.27 Also,

note that the HT bounds in both designs contain the maximum entropy solution. This phenomenon
arises because of the continuity of the maximum entropy distribution function. Since the pseudoprofit
function corresponding to the maximum entropy distribution is continuous, its maximum value can

27The green profit curve is higher at the value marked AK than at the value marked ME in the top graph and lower in
the bottom one.
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never be smaller than the maximum of the worst case pseudoprofit function.
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Figure 4: The top graphs show a density similar to the one discussed in example 1, along with the
corresponding distribution function (green), its bounds (orange and blue), and the maximum
entropy solution (black). The bottom figures show the pseudoprofit function (left) and the profit
function (right), where the blue and orange lines correspond to the lower and upper bound of the
value distribution function presented in the top right panel.

Figures 4 to 6 illustrate what can happen if HT’s strict pseudoconcavity assumption is violated.

First, in figure 4 the pseudoprofit function has a flat area; see example 1. In this example, the support
of the value distribution is larger than Œ0; 1�; we only draw the unit interval because that is where
the action is. We set f .v/ D �12v2 C 8v on Œ0; 0:5/ and f .v/ D 1=.4v2/ on Œ0:5; 1/, with the
remainder of the mass at or beyond 1. In this example, the HT identified set is still convex.

Second, figures 5 and 6 are based on a mixture of two Beta distributions, where the corresponding
pseudoprofit functions have two distinct local maxima. Because HT’s assumptions are violated,

their results do not apply here. However, applying HT’s machinery to the bounds of the pseudoprofit
function produces a nonconvex set for the optimal reserve price. Neither the entropy approach
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Figure 5: The top graphs shows the mixture density 0:9 � Beta.2; 10/C 0:1 � Beta.20; 2/ and the
corresponding distribution function (green), along with its bounds (orange and blue), and the
maximum entropy solution (black). The bottom figures show the pseudoprofit function (left) and
the profit function (right), where the blue and orange lines correspond to the lower and upper bound
of the value distribution function presented in the top right panel.

nor the maxmin solution requires the pseudoconcavity assumption to yield a point decision for the
reserve price.

Figure 6 shows that the maximum entropy reserve price and the AK solution can be substantially
different. In this example, the profit generated by maximum entropy is considerably higher than that
generated by maxmin. However, this is not always true, as can be seen in figure 5.

Figure 7 depicts results for a uniform value distribution with � D 0:10 and � D 0:20. In
this case the entropy–maximizing distribution is uniform, also, so the true pseudoprofit and profit
functions coincide with their maximum entropy counterparts. There are a few points to note here.
First, the HT bounds become less informative as� increases: for� D 0:20, one end point of the HT
bounds is uninformative in this example. Second, in contrast to maximum entropy, AK always take
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Figure 6: The top graphs shows the mixture density 0:92 � Beta.2; 10/C 0:08 � Beta.20; 2/ and the
corresponding distribution function (green), along with its bounds (orange and blue), and the
maximum entropy solution (black). The bottom figures show the pseudoprofit function (left) and
the profit function (right), where the blue and orange lines correspond to the lower and upper bound
of the value distribution function presented in the top right panel.

a value from the mass points of the bid distribution. For instance, if � D 0:20 then the maximum
entropy optimal reserve price equals 0:5, which is not in the support of the bid distribution.
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Figure 7: The true value distribution is uniform on the unit interval. The top graphs are the
pseudoprofit (Left) and the profit function (Right) with � D 0:10. The bottom graphs use
� D 0:20. The blue and orange lines correspond to the lower and upper bound of the value
distribution function.

5. Empirical illustration

We now use a modest empirical example to illustrate our method and to make a comparison with the
other approaches. We follow HT in using timber auction data and we refer the reader to HT for a
more detailed discussion of the features of that data set.

The application is imperfect in that the minimum bid increments in these data are small (in the
order of $0.05 per MBF28), with the consequence that the theoretical upper and lower bounds are
close and their estimates can cross.

We use HT’s method of smoothing the estimates of the lower and upper bounds, denoting
28Thousand board feet.
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the smoothing parameter �HT. We focus here on auctions with two or three bidders to reduce
heterogeneity. Like HT, we use auction data from region 6 and zone 2 in the period 1982–1989,

where we focus on English auctions that employed the flat pricing method in which the object was
sold; this left us with 2,020 auctions to use for this exercise. We incorporate the seller’s value v0

into the profit function. Since the choices made are not identical to those in HT, our numbers do not
coincide with theirs.

We control for (observed) heterogeneity by conditioning on (logarithms of) manufacturing costs,
logging costs, selling value, six-month inventory, a measure of species concentration and year
dummies; all dollar values are deflated to October 1, 1982 using the producer price index (WPU085).

Below we refer to these covariates as x. Summary statistics for the covariates (except the year
dummies) are presented in table 1.

Mean Std Dev Min Max
mfg costs 209.4 35.1 40.0 294.8
logging costs 133.4 33.2 48.5 358.4
selling value 451.5 64.9 243.4 1303.2
six-month inventory 1653.0 545.0 56.8 2862.4
species concentration 0.7 0.2 0.2 1.0

Table 1: Observed auction heterogeneity

To address the curse of dimensionality we assume that the joint distribution of the valuation and
the number of participants given the vector x of covariates depends on x only through the single
index x|

ˇ. We estimate ˇ by using a semiparametric regression of the number of participants on
covariates using Ichimura’s estimator (e.g. Ichimura, 1993; Hardle, Hall, and Ichimura, 1993). Like
HT, we focus on the mean values of the covariates. Thus, to start we estimate bounds for F .v j

x
|
ˇ D �

|

xˇ/, for which we use bounds on F .v j n D n; x
|
ˇ D �

|

xˇ/ together with P.n D n j

x
|
ˇ D �

|

xˇ/: independence between v and n (given covariates) is not assumed here.
We present our results for �HT 2 f�3; 0; 3g; the larger one chooses �HT, the more conservative

are the bounds. Figure 8 shows the estimated bounds and the resulting ME solution for the case in
which the covariates are evaluated at their means. Since � is small, there are now many nodes. For
�HT D �3 the lower and upper bounds almost coincide, and they often cross, which suggests that
we almost have point identification. For �HT D 0;�3, the ME solution hugs the lower bound which
contrasts with AK’s maxmin approach which is based on the upper bound of the value distribution
(which corresponds to the lower envelope of the (pseudo–) profit function).

The recommended optimal reserve prices29 for various values of v0 are presented in table 2.

As expected, the solutions are far apart for �HT D 0 or 3. However, for �HT D �3, the bounds on
29In HT’s case bounds on the optimal reserve price.
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Figure 8: Estimated bounds of the value distribution

the value distribution are so tight that they lead to some unexpected numbers in table 2. This can
be explained by the shape of the pseudo-profit functions corresponding to the bounds of the value
distribution, as depicted in figure 9.

v0 �HT Entropy maxmin rL rU .rL C rU /=2

-3 $ 108.82 $ 129.98 $ 100.97* $ 144.38* $ 122.67*

$20 0 $ 121.00 $ 108.82 $ 72.94 $ 212.81 $ 142.88

3 $ 121.00 $ 100.97 $ 57.34 $ 237.58 $ 147.46

-3 $ 137.53 $ 136.16 $ 129.95* $ 205.18* $ 167.57*

$40 0 $ 132.40 $ 136.16 $ 87.00 $ 212.81 $ 149.91

3 $ 132.40 $ 137.53 $ 72.94 $ 237.58 $ 155.26

-3 $ 204.86 $ 187.56 $ 136.16* $ 208.09* $ 172.12*

$60 0 $ 143.89 $ 136.16 $ 102.06 $ 237.58 $ 169.82

3 $ 143.89 $ 204.86 $ 88.23 $ 237.58 $ 162.90

-3 $ 204.86 $ 187.56 $ 187.56 $ 212.81 $ 200.19

$80 0 $ 187.56 $ 187.56 $ 125.74 $ 237.58 $ 181.66

3 $ 152.37 $ 204.86 $ 110.82 $ 237.58 $ 174.20

* indicates that the identified set is not convex.

Table 2: Entropy, HT, and AK solutions of the reserve price

For instance, consider the case of �HT D �3 and v0 D $40. Here, the upper and lower envelopes
of the pseudo-profit functions are not strictly pseudoconcave. When there are two local maximizers
(with the local maxima close to each other), our approach picks the smaller one; we did not make
this adjustment for the AK solutions reported here. Note that the HT identified set is not convex in
this case, which suggests that the value distribution itself may not be strictly pseudoconcave.
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Figure 9: Pseudo profit functions for various values of v0
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6. Distribution theory

So far we have treated D0 as known or given. In the remainder we address the fact that D0 is
estimated in practice and develop a distribution theory for the maximum entropy solution, the
optimal reserve price and maximum expected revenue. Our problem is similar to that of Hsieh, Shi,
and Shum (2018) in that we deal with a constrained optimization problem, but ours is neither linear
nor quadratic programming.

We return to the homogeneous auctions case. Our first assumption pertains to the asymptotic
behavior of OD.

Assumption A. For some random vector ˆ, O� D
p
N. OD �D0/

d
! ˆ as N ! 1.

Since D0 is a finite–dimensional vector of bounds (see theorem 1) which are probabilities, con-
structing a

p
N–consistent estimator OD is a routine exercise. However, without using HT–type

smoothing across bidders, the limit distribution ˆ is not usually normal because of the minimum
function that appears in the upper bound; one can however simulate from ˆ.

Equation (4) has a unique solution g� once D0 is given; recall that we wrote g� D gı.D0/ to
make this dependence explicit in our discussion below below (4). Since g� is the unique solution
to (4), it follows from the maximum theorem that gı is continuous. Therefore, consistency of Og�

follows from the continuous mapping theorem. Formal proofs of all results are provided in the
appendices.

Theorem 2. Suppose that assumption A holds. Then Og� � g� D op.1/.

The maximum entropy solution based on OD may not yield a unique optimal reserve price but, as
will become apparent in section 6.3, the set of optimal reserve prices is finite. If one only desires to
know an optimal reserve price then choosing an element from R. Og�/ D argmaxr �.r; Og�/ will do.

If only the optimal profit is desired then P . Og�/ D maxr �.r; Og�/ is a consistent estimator. For a
full discussion of inference–related issues, we refer to section 6.3.

We now develop a distribution theory for ME solutions followed by some Monte Carlo simula-
tions.

6.1 Asymptotic distribution for Og�: We start with Og�. The theory developed here is not specific
to the entropy problem but can be useful more generally for optimization problems with estimated
inequality constraints.

We first explore how perturbations toD0 affect g�. The function gı is not generally differentiable
at D0. However, in lemma D.2 we show that it is directionally differentiable in every direction,

which can be used to obtain results for the asymptotic distribution of
p
N. Og� � g�/. In order to

describe the directional derivative, we need to discuss the behavior of the Lagrange multipliers of
the optimization problem in (4).
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6.1 Asymptotic distribution for Og�

We first eliminate gJ C1 and one equality constraint by replacing gJ C1 with 1 �
PJ

j D1 gj . The
objective function becomes

 \begin {equation}\label {eq:objective function} Q\parens {g} =\sum _{j=1}^J g_j \parens { \log g_j - \log \Delta } + \parens [\bigg ]{1-\sum _{j=1}^J g_j} \cparens [\Bigg ]{\log \parens [\bigg ]{1-\sum _{j=1}^J g_j} - \log \Delta } \end {equation}




  


























with constraints
Gj � ‡0j and Gj � ƒ0j for j D 1; 2; � � � ; J ; (8)

where Gj D
Pj

kD1
gk. We define G�

j D
Pj

kD1
g�

k
. Let ��

uj � 0 and ��

j̀
� 0 be the Lagrange

multipliers corresponding to the ‡0j andƒ0j constraints, respectively. Further, let 
�
j D ��

uj � ��

j̀
,

where we note that ��
uj�

�

j̀
D 0 for all j because ‡0j � ƒ0j .30 The bounds D0 D Œ‡

|

0 ; ƒ
|

0�
|

belong to the parameter space Œ0; 1�2J . Below, we partition Œ0; 1�2J into finitely many areas in such
a way that the signs of all the 
�

j ’s are the same for two points in the same area and at least one
multiplier has a different sign for two points in different areas; this partition is unique. Thus, each
area corresponds to a set of nonzero Lagrange multipliers.

Let 
� D Œ
�
1 ; � � � ; 


�
J �

|
D 
ı.D0/ for some 
ı. Further, letK D .Ku; K`/ be a pair of disjoint

sets such that Ku [K` � f1; 2; : : : ; J g and define

SK D

n
D 2 Œ0; 1�2J

W KC.D/ D Ku; K�.D/ D K`; 8j W ƒj � Gı
j .D/ � ‡j

o
; (9)

whereKC.D/ D
˚
j W 
ı

j .D/ > 0
	
,K�.D/ D

˚
j W 
ı

j .D/ < 0
	
, andGı

j D
Pj

kD1
gı

k
. So,Ku; K`

represent binding upper and lower bounds, respectively, where we define binding constraints to
be constraints whose Lagrange multipliers are nonzero; Lagrange multipliers can equal zero even
if constraints hold with equality.31 This is an important distinction as will become apparent in
section 6.2.

The SK sets are distinct and form a partition of Œ0; 1�2J by construction. Consider the following
example.

Example 2. Suppose that J D 2 and there are only upper bound constraints: i.e.

min
g1;g2;g3

˚
g1 logg1 C g2 logg2 C g3 logg3 � .g1 C g2 C g3/ log�

	
subject to

8̂̂<̂
:̂
g1 C g2 C g3 D 1;

g1 � ‡10;

g1 C g2 � ‡20:

30It would be more precise to say that there exist solutions for which ��
uj�

�
j̀

D 0 because the Lagrange multipliers
are not unique when ‡0j D ƒ0j .

31For instance, if one minimizes x2 subject to x � 0 then the Lagrange multiplier equals zero but the constraint holds
with equality, i.e. x D 0.
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6.1 Asymptotic distribution for Og�

We first eliminate g3 by using the equality constraint and focus on g1; g2. Then, the Karush–
Kuhn–Tucker (KKT) conditions are8̂̂<̂

:̂
logg�

1 � log.1 � g�
1 � g�

2/C 
�
1 C 
�

2 D 0; 
�
1 .g

�
1 � ‡10/ D 0; g�

1 � ‡10;

logg�
2 � log.1 � g�

1 � g�
2/C 
�

2 D 0; 
�
2 .g

�
1 C g�

2 � ‡20/ D 0; g�
1 C g�

2 � ‡20;


�
1 � 0; 
�

2 � 0:

So, there are four cases:32 .
�
1 ; 


�
2 / 2

˚
.0; 0/; .C; 0/; .0;C/; .C;C/

	
. Each case represents a

.
�
1 ; 


�
2 / g�

1 g�
2 D0 D .‡10; ‡20/ 2

.0; 0/ 1=3 1=3 S.;;;/ D
˚
3‡1 � 1; 3‡2 � 2

	
.C; 0/ ‡10 .1 � ‡10/=2 S.f1g;;/ D

˚
3‡1 < 1;‡1 C 1 � 2‡2

	
.0;C/ ‡20=2 ‡20=2 S.f2g;;/ D

˚
3‡2 < 2;‡2 � 2‡1

	
.C;C/ ‡10 ‡20 � ‡10 S.f1;2g;;/ D

˚
2‡1 < ‡2; 2‡2 < ‡1 C 1

	
Table 3: Solutions for the case J D 2 with no lower bounds

unique set of constraints with nonzero multipliers and corresponds to a polygon in Œ0; 1�2 as shown
in figure 10. In table 3 each such polygon is denoted by S.Ku;;/ for some Ku.33 If two polygons
share a boundary then the boundary belongs to the polygon with more multipliers equal to zero.

‡1

‡2

(0,0)(+,0)

(0,+)(+,+)

Figure 10: Graphical illustration of the SK sets in table 3; .0; 0/; .C; 0/; .C;C/, and .0;C/
indicate the corresponding signs of the multipliers .
�

1 ; 

�
2 /.

In example 2, the partitioning sets SK are polygons. As we show in lemma C.1 in appendix C, the
SK sets are always polyhedra, which is important for the directional differentiability of gı. Further,

32For general J and with both upper and lower bounds, there are
PJ

rD0 2
r
�

J
r

�
different cases.

33Since there are no lower bound constraints in this example, K` D ;.
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6.1 Asymptotic distribution for Og�

it is generally true that boundaries belong to the area with more multipliers equal to zero, a property
that will prove useful for developing an inference procedure.

Recall that each of the SK sets corresponds to a set of binding constraints. Therefore, ifD0 2 SK

then the relevant constraints in (8) can be expressed as

R
|

Kg D D0K ; (10)

where RK 2 RJ �„ matrix and D0K D Œ‡
|

0Ku
; ƒ

|

0K`
�
|

2 R„ with „ the cardinality of Ku [ K`.

Here, ‡0Ku
and ƒ0K`

are the subvectors of ‡0 and ƒ0 determined by the sets Ku; K` of indices,
respectively: for a vector D D Œ‡

|
; ƒ

|
�
|

2 R2J and a set of indices K D .Ku; K`/, the operation
of finding the subvectorDK D Œ‡

|

Ku
; ƒ

|

K`
�
| will be denoted by the function � (i.e.DK D �.D;K/).

Note that RK is a matrix of full column rank consisting of zeros and ones, unless Ku D K` D ;.34

Example 3. Again consider example 2, where there are four SK sets. Since there are no lower
bound constraints, we have K` D ; in all four cases.

(a) K D .;;;/: RK is void and no constraints are relevant.

(b) K D .f1g;;/: RK D Œ1; 0� and D0K D ‡10.

(c) K D .f2g;;/: RK D Œ1; 1� and D0K D ‡20.

(d) K D .f1; 2g;;/: RK D

h
1 0
1 1

i
and D0K D

h
‡10

‡20

i
.

We now derive an asymptotic expansion of OZ D
p
N. Og� � g�/, which will be the basis for our

discussion in section 6.2. Let K0 D .Ku0; K`0/, where

Ku0 D fj W 
ı
j .D0/ > 0g and K`0 D fj W 
ı

j .D0/ < 0g: (11)

So,D0 2 SK0
by definition. Define OK by replacing D0 in the definition of K0 with OD, so OD 2 S OK

by definition as well. Further, let ‚.d;K/ D H�1RK

�
R

|

KH
�1RK

��1
�.d;K/ when K ¤ .;;;/

and ‚.d;K/ D 0 when K D .;;;/, where H is the Hessian of Q evaluated at g�.35 We then have
the following theorem.

Theorem 3. Suppose that assumption A holds. Then

OZ WD
p
N. Og�

� g�/ D

8<:‚.ˆ;K0/C op.1/; if D0 2 int.SK0
/;

‚. O�; OK/C op.1/; if D0 2 bdr.SK0
/;

where H is the Hessian of Q at g�.

34If Ku D K` D ; then RK is void and all constraints evaporate.
35Note that H�1 D Diag.g�/C g�g�|.
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6.2 Inference on g�

Please note that theorem 3 does by itself not provide guidance for inference. For instance, we do
not know whether or not D0 2 int.SK0

/. If D0 is a boundary point of SK0
, then OK is random and

depends on O� even in the limit.36 We propose an inference procedure and establish its validity in
section 6.2.

6.2 Inference on g�: Our inference procedure detects automatically whether D0 is an interior
point or not. If D0 is an interior point then our procedure is (asymptotically) similar, whereas if D0

is a boundary point then our procedure is conservative. Our bound selection procedure is similar to
what is used in the moment inequality literature (e.g. Andrews and Soares, 2010), but our inference
procedure is different. Indeed, unlike Andrews and Soares (2010) we have an optimization problem
with inequality constraints with estimated bounds that has a unique solution. Here, the optimization
problem stems from our use of maximum entropy. The following example illustrates the basic idea.

Example 4. Consider ming1

˚
g1 logg1 C .1 � g1/ log.1 � g1/

	
s.t. g1 � U10: Here, the KKT

conditions are given by logg�
1 � log.1 � g�

1/ C 
�
1 D 0; 
�

1 .g
�
1 � U10/ D 0; 
�

1 � 0: Now,

let S0 D fU W U > 1=2g, S1 D fU W U < 1=2g, and Sb D f1=2g. Let OU1 be a
p
N -consistent

estimator of U10.

(1) If U10 2 S0, then g�
1 D 1=2 and 
�

1 D 0; the constraint holds with (strict) inequality.

Further, since OU1 2 S0 with probability approaching one, we have Og1 D 1=2 with probability
approaching one. Therefore,

p
N. Og�

1 � g�
1/ ' 0.

(2) If U10 2 S1, then g�
1 D U10 and 
�

1 D logf.1 � U10/=U10g > 0; the constraint holds with
equality. Since OU1 2 S1 with probability approaching one, we have Og1 D OU1, which means
that

p
N. Og�

1 � g�
1/ '

p
N. OU1 � U10/ in this case.

(3) If U10 2 Sb, then g�
1 D 1=2 and 
�

1 D 0; the constraint holds with equality. In this case,
the distribution of Og1 depends on whether OU1 2 S0 or OU1 2 S1. That is, if OU1 # 1=2, then
Og1 D 1=2 with probability approaching one, while if OU1 " 1=2, then Og1 � g�

1 D OU1 � U10

converges at the rate of
p
N . Therefore,

p
N. Og1 � g�

1/ '
p
N. OU1 � U10/1. OU1 > U10/.

In both cases (2) and (3) the constraint holds with equality but the two cases should be distinguished
because the limit distribution of Og1 is different: the critical value from case (2) is too small for case
(3). Using the value of the multiplier together with the constraint itself can help us to distinguish
between the three cases.

In this simple example the limit distribution in case (3) can be obtained explicitly, which is
not true in a more general setup. However, we can always take a conservative approach in the
boundary case. For instance, in case (3), we can use the fact that maxf0;

p
N. OU1 � U10/g �

p
N. OU1 � U10/1. OU1 > U10/ '

p
N. Og�

1 � g�
1/.

36For instance, suppose that in example 2,D0 D .‡10; ‡20/ D .1=3; 1=3/ 2 S.;;;/. Hence, 
�
1 .D0/ D 0. However,

for any small t > 0,
˚
d W 
�

1 .D0 C td / D 0; kdk D 1
	

and
˚
d W 
�

1 .D0 C td / > 0; kdk D 1
	

are continua.
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6.2 Inference on g�

Below we elaborate on this idea. Recall from (11) that K0 D .Ku0; K`0/ are the sets of indices
of the constraints that have nonzero multipliers atD0. Recall further that we refer toK0 as the set of
binding constraints atD0, but that there can be constraints that hold with equality that are not in K0.

Indeed, define K�
0 D .K�

u0; K
�

`0
/ with

K�
u0 D

˚
j W Gı

j .D0/ D ‡0j

	
and K�

`0 D
˚
j W Gı

j .D0/ D ƒ0j

	
: (12)

We then have the following lemma.

Lemma 6.1. K0 D K�
0 if and only if D0 2 int.SK0

/.37

Lemma 6.1 is a consequence of the continuity of the solution and the multipliers. The proof is
provided in appendix G.

Below, we develop estimators QK and QK� such that P. QK ¤ K0/ D o.1/, P. QK� ¤ K�
0 / D o.1/,

and P. QK � OK � QK�/ D 1.38 In view of theorem 3 and lemma 6.1, we propose simulating the
distribution of OT D T . QK; QK�/ for given values of QK and QK�, where

T .Kı; K�/ D max
Kı�K�K�

‚.ˆ�; K/; (13)

with ˆ� an independent copy of ˆ; since ‚ is a vector–valued function, the maximum is element–
wise.39 So in each replication we are using a different draw ˆ� but the same estimates QK; QK�

based on the original data. Let T D T .K0; K
�
0 /. Since QK D K0 and QK� D K�

0 with probability
approaching one, OT D T with probability approaching one, also, so the distinction between OT and T
is moot for our asymptotic analysis. The quantiles of T provide an upper bound for the corresponding
quantiles of OZ. Further, if D0 is an interior point then K0 D K�

0 and hence T D ‚.ˆ�; K0/ has
the same distribution as ‚.ˆ;K0/ D OZ C op.1/. Hence, the quantiles of T and OZ coincide in the
limit and inference is asymptotically similar.

Let QK D . QKu; QK`/ and QK� D . QK
�

u;
QK

�

` /, where(
QKu D

˚
j W 
ı

j .
OD/ � �N

	
; QK` D

˚
j W 
ı

j .
OD/ � ��N

	
;

QK
�

u D
˚
j W Gı

j .
OD/ � O‡j � �N

	
; QK

�

` D
˚
j W Gı

j .
OD/ � Oƒj C �N

	
;

with 0 < �N D o.1/ and 1 D o
�
�N

p
N

�
. Input parameters like �N are much discussed in the

moment inequality literature; the BIC choice �2
N D logN = N is popular.40

37By the KKT condition, we always have K0 � K�
0 . So, K0 ¨ K�

0 if and only if D0 2 bdr.SK0
/.

38For pairs of sets K D .Ku; K`/ and K� D .K�
u ; K

�
`
/, we write K � K� when the inclusion holds elementwise.

39One may consider a quadratic form or other scalar–valued transformation of‚. We thank an anonymous referee for
making this point.

40In practice the standard deviations of O‡j and Oƒj as well as the size of O‡j � Oƒj should be taken into account in
choosing the input parameter. We thank an anonymous referee for pointing this out.
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6.3 Inference on expected revenue and optimal reserve price

Let ‡�.D0/ D
�
‡�

1 .D0/; � � � ; ‡
�
J .D0/

�|

and ƒ�.D0/ D
�
ƒ�

1.D0/; � � � ; ƒ
�
J .D0/

�|

, where
‡�

j .D0/ D Gı
j .D0/ � ‡j 0 and ƒ�

j .D0/ D Gı
j .D0/ �ƒj 0.

Lemma 6.2. Suppose that assumption A is satisfied. If 
ı.D0/; ‡
�.D0/, and ƒ�.D0/ do not vary

with N , then (a) P. QK ¤ K0/ D o.1/, (b) P. QK� ¤ K�
0 / D o.1/. If instead 
ı.D0/; ‡

�.D0/, and
ƒ�.D0/ can vary with N then (a0) P.K0 š QK/ D o.1/, (b0) P. QK� š K�

0 / D o.1/, Finally, we
always have P. QK � OK � QK�/ D 1.

Lemma 6.2, together with theorem 3, provides the basis for using (13) for inference. Also,

lemma 6.2 clarifies in what sense our procedure will be uniformly valid because it generally holds
that T .K0; K

�
0 / � T with probability approaching one. Throughout the paper we focus on the

pointwise case where 
ı.D0/; ‡
�.D0/, and ƒ�.D0/ are all fixed, but lemma 6.2 shows that our

procedure will stay valid (though conservative) in a uniform sense as well.

Theorem 4. Suppose that assumption A is satisfied. Then P. OT ¤ T / D o.1/. Further, for any
x 2 RJ , P. OZ � x/ � P.T � x/ C o.1/, where the inequality holds with equality whenever
D0 2 int.SK0

/.

6.3 Inference on expected revenue and optimal reserve price: We now consider estimation of
and inference for the maximum attainable revenue and optimal reserve price corresponding to the
maximum entropy solution for the value distribution. We build on our discussion in section 6.2.

Consider
P .g�/ D max

r2Œ0;1�
�.r; g�/ and R.g�/ D argmax

r2Œ0;1�

�.r; g�/; (14)

where �.r; g/ D Q�fr;F �.�; g/g: Q�.r;F / and F �.v; g/ were introduced in sections 2 and 3, respec-
tively. So, �.r; g�/ is the maximum entropy expected profit function. P .g�/ can be estimated by
P . Og�/ but R. Og�/ need not be a consistent estimator of R.g�/, albeit that R. Og�/ is contained in
R.g�/ with probability approaching one. So if the sole objective is to select an optimal reserve
price, then selecting an element from R. Og�/ suffices.

Below we construct an estimator of R.g�/ and determine its properties. Once we establish the
limiting distribution of the estimator Or1 of the smallest element in R.g�/, OP � D �. Or1; Og�/ is an
estimator of P .g�/ which is more convenient for inference purposes than P . Og�/.

Although R.g�/ need not be a singleton, it is finite. The reason is that, for any g > 0, the
function �.�; g/ with

�.r; g/ D �C.r; g/ D
@C

r Q�fr;F �.r; g/g

nfF �.r; g/gn�1
; (15)

where @C
r denotes a right derivative, is piecewise linear in r with negative slope coefficients.41

41Note that (2) and (15) are identical except that we now do not implicitly assume the existence of the partial derivative
and only focus on distribution functions of the form F �.�; g/.
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6.3 Inference on expected revenue and optimal reserve price

Indeed, for all g,

�.r; g/ D 1 �Mj �1.g/C .j � 1/gj � 2gj r = � if r 2 Ij ; (16)

where Mj .g/ D Gj D
Pj

kD1
gk and M0.g/ D 0. Note that � is possibly discontinuous at the ǰ ’s,

i.e. on the support of the bid distribution, because �. ǰ ; g/ need not equal ��. ǰ ; g/ for any or all
j , which is defined as � in (16) but with @C

r replaced with the left derivative @�
r .

Lemma 6.3. For some integer 1 � m < 1 and some 0 < r�
1 < r�

2 < � � � < r�
m < 1, R.g�/ D˚

r�
1 ; r

�
2 ; � � � ; r

�
m

	
. Further, each NIj D Œ ǰ �1; ǰ � contains at most one element of R.g�/.

We show that both the number and the identity of the r�
j –values can be estimated consistently:

the rate at which m is estimated is arbitrarily fast. The proof is simple. Let ORN D
˚
r 2 Œ0; 1� W

�.r; Og�/ � P . Og�/ � �n

	
. Since �.�; Og�/ is continuous, ORN is a compact subset of Œ0; 1� by

construction. Consistency is obtained in a similar manner as in Chernozhukov, Hong, and Tamer
(2007), albeit that here the identified set is known to be a collection of isolated points.

Theorem 5. dH

˚
ORN ;R.g

�/
	

D op.1/, where dH denotes the Hausdorff distance.

Note that ORN is set–valued. We can use it to create point estimates of each of the r�
j –values

as follows. Let Q�N D 3
p
�N , ORN;1 D

˚
r 2 ORN W r � min ORN � Q�N

	
, ORN;2 D

˚
r 2 ORN n ORN;1 W

r � min. ORN n ORN;1/ � Q�N

	
, etcetera: so, ORN D [ Om

kD1
ORN;k where Om is the smallest value of Qm

for which ORN; QmC1 is empty. We define our estimator of r�

k
as

Ork D min argmax
r2 ORN;k

�.r; Og�/:

Our definition of Ork allows for the possibility that the maximizer of �.r; Og�/ in ORN;k is not unique.
Consistency of Ork for r�

k
is straightforward to establish.

Theorem 6. We have P. Om ¤ m/ D o.1/, and for all k D 1; : : : ; m, Ork � r�

k
D Op.

p
�N /.

42

As we will show below, the convergence rate of Ork is in fact better than the rate obtained in
theorem 6.

We now turn to the construction of confidence intervals and focus on r�
1 : the arguments are

analogous for r�
2 ; : : : ; r

�
m if m > 1. Note that r�

1 is the unique maximizer of �.r; g�/ on some
compact interval A1: such an interval exists by lemma 6.3. Define r1.g/ D min QR1.g/, where

QR1.g/ D argmax
r2A1

�.r; g/: (17)

42If Om < m then Or OmC1; : : : ; Orm can be defined arbitrarily.
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6.3 Inference on expected revenue and optimal reserve price

So the difference between r1. Og�/ and Or1 is that the maximization is conducted over a(n asymptotically)

larger set in the former case: A1 versus ORN;1. However, the difference is minute from a theoretical
perspective.

Lemma 6.4. P
˚
r1. Og�/ ¤ Or1

	
D o.1/.

Typically, QR1.g/ is a singleton for all g in a small enough neighborhood of g�, but there is one
exceptional case in which QR1.g/ has two elements for some g near g�.43

In view of lemma 6.4 we consider the asymptotic distribution of
p
N fr1. Og�/ � r1.g

�/g. If the
function r1 is (Hadamard–) differentiable at g� then the delta method will apply. Unfortunately,

as we commented earlier, r1 may fail to be Hadamard differentiable. However, even in that case,
small perturbations of g� have only limited effects on the function r1, which is sufficient for our
purpose. Below we discuss the Hadamard derivatives of r1, which requires us to analyze the first
order condition of (17).

Recall that �.�; g�/ is piecewise linear but not necessarily continuous. So we distinguish between
the case in which r1.g�/ D r�

1 is a continuity point of � and the case in which it is not. Let j � be
such that r�

1 2 Ij � .

ǰ ��2 ǰ ��1 r�
1 ǰ �

�

ǰ ��2 ǰ ��1 D r�
1 ǰ �

�

(a) Interior solution (b) Boundary solution

Figure 11: Graphical illustration of the first order condition for r�
1

Since � is linear and downward sloping on Ij � , there are two possibilities, which are illustrated
in figure 11. First, if r�

1 > ǰ ��1 then �fr1.g
�/; g�g D 0, in which case the derivative of r�

1 at g�

can be obtained via the implicit function theorem. However, if r�
1 D ǰ ��1, then r�

1 may not be
differentiable at g� and there are then four separate (sub)cases to consider as shown in table 4.

In appendix H.2 we show that r1 is Hadamard–differentiable in cases I–IV. Case V is the
exceptional case mentioned earlier, but even in case V valid inference for r�

1 is possible.
43The exception arises when Qr1.g

�/ D ǰ ��1 for some j � and �C. ǰ ��1; g
�/ D ��. ǰ ��1; g

�/ D 0. Then
Hadamard differentiability fails and there can be two maximizers. Absent this technicality, r1.g/ is the unique maximizer
of �.r; g/ on A1 in a neighborhood of g�.
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6.3 Inference on expected revenue and optimal reserve price

case condition
I ǰ ��1 < r

�
1 < ǰ � ;

II r�
1 D ǰ ��1 with �.r�

1 ; g
�/ < 0 < ��.r�

1 ; g
�/;

III r�
1 D ǰ ��1 with �.r�

1 ; g
�/ D 0 < ��.r�

1 ; g
�/;

IV r�
1 D ǰ ��1 with �.r�

1 ; g
�/ < 0 D ��.r�

1 ; g
�/;

V r�
1 D ǰ ��1 with �.r�

1 ; g
�/ D 0 D ��.r�

1 ; g
�/.

Table 4: Separate cases for the sensitivity analysis

Let ı; ı� 2 RJ with

ık D �
�

2g�
j �

�

8̂̂̂<̂
ˆ̂:
1; k < j �;

.1 �G�
j ��1/=g

�
j �; k D j �;

0; k > j �:

ı�

k D �
�

2g�
j ��1

�

8̂̂̂<̂
ˆ̂:
1; k < j � � 1;

.1 �G�
j ��2/=g

�
j ��1; k D j � � 1;

0; k > j � � 1:

Further, for v 2 RJ , define

 g�.v/ D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

v
|
ı in case I;

0 in case II;

max.0; v|
ı/ in case III;

min.0; v|
ı�/ in case IV;

max.jv|
ıj; jv

|
ı�j/ in case V;

(18)

which is the Hadamard derivative of r1 at g� in the direction v in cases I–IV and an upper bound of
the effect of perturbing g� on r1 in case V.

The first case in (18) is the most common: it arises with an interior solution (r�
1 > ǰ ��1),

in which case �.r�
1 ; g

�/ D 0 D ��.r�
1 ; g

�/. However, this case is dramatically different from
�.r�

1 ; g
�/ D 0 D ��.r�

1 ; g
�/ with r�

1 D ǰ ��1, i.e. case V. Case II is pictured in the right panel of
figure 11: small changes in g� do not affect r�

1 . The remaining two cases in (18) arise if one of the
two line segments in the right panel of figure 11 has an endpoint at . ǰ ��1; 0/.

We now characterize the asymptotic distribution of O� D
p
N. Or1 � r�

1 /. Let ‚ be the dominant
right hand side term in theorem 3, i.e. depending on the location ofD0 either‚.ˆ;K0/ or‚. O�; OK/.

Theorem 7. If assumption A is satisfied then in cases I–IV, we have O� D  g�.‚/C op.1/, and in
case V, j O� j �  g�.‚/C op.1/.

Now consider revenue. Recall that P .g�/ D �.r�
1 ; g

�/ is estimated by OP � D �. Or1; Og�/.
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6.3 Inference on expected revenue and optimal reserve price

Theorem 8. If assumption A is satisfied then
p
N f OP � � P .g�/g D @g�.r

�
1 ; g

�/
|
‚C op.1/.

� D c�0 Beta(0.5,0.5), n=2

c D 0:5 0.0000 0.0000 0.9842 0.9842 0.9842 0.9844 0.9878 0.9884 0.0004

c D 1:0 0.0000 0.0000 0.9938 0.9938 0.9938 0.9942 0.9964 0.9878 0.0004

c D 1:5 0.0000 0.0000 0.9984 0.9984 0.9984 0.9988 0.9998 0.9856 0.0002

Beta(0.5,0.5), n=3

c D 0:5 0.0000 0.0000 0.9870 0.9870 0.9870 0.9872 0.9896 0.9742 0.0000

c D 1:0 0.0000 0.0000 0.9900 0.9900 0.9900 0.9904 0.9942 0.9668 0.0000

c D 1:5 0.0000 0.0000 0.9932 0.9932 0.9932 0.9936 0.9970 0.9566 0.0000

Beta(1.0,1.0), n=2

c D 0:5 0.0000 0.9962 0.9962 0.9962 0.9962 0.9962 0.9962 0.9962 0.9962

c D 1:0 0.0000 0.9962 0.9962 0.9962 0.9962 0.9962 0.9962 0.9962 0.9962

c D 1:5 0.0000 0.9962 0.9962 0.9962 0.9962 0.9962 0.9962 0.9962 0.9962

Beta(1.0,1.0), n=3

c D 0:5 0.0000 0.9854 0.9854 0.9854 0.9854 0.9854 0.9854 0.9854 0.9854

c D 1:0 0.0000 0.9850 0.9850 0.9850 0.9850 0.9850 0.9850 0.9850 0.9850

c D 1:5 0.0000 0.9856 0.9856 0.9856 0.9856 0.9856 0.9856 0.9856 0.9856

Beta(2.0,2.0), n=2

c D 0:5 0.0002 0.0292 0.1430 0.9826 0.9706 0.9602 0.9710 0.9744 0.6232

c D 1:0 0.0002 0.0210 0.1596 0.9868 0.9750 0.9648 0.9754 0.9800 0.7226

c D 1:5 0.0002 0.0160 0.1846 0.9900 0.9780 0.9678 0.9784 0.9844 0.7922

Beta(2.0,2.0), n=3

c D 0:5 0.0000 0.1172 0.0816 0.9826 0.9828 0.9826 0.9828 0.9868 0.6102

c D 1:0 0.0000 0.1090 0.0806 0.9848 0.9850 0.9848 0.9850 0.9914 0.6396

c D 1:5 0.0000 0.1030 0.0824 0.9874 0.9876 0.9874 0.9876 0.9940 0.6612

Table 5: Coverage rates at each node with nominal rate 0.95, N = 1000; 5000 replications.

Recall that the function  g� depends on the case. For instance, in case II, Or1 is superconsistent.
In fact, convergence in this case can be shown to be arbitrarily fast. Therefore, inference on r1
requires that we know which of the five cases we are in. This is not hard to do because theorem 7
shows that the rate of Or1 cannot be worse than

p
N and hence we can find out which case is relevant

with probability approaching one. Therefore, we can rely on theorem 4 to conduct inference on r�
1 .

For example, suppose that Or1 2 .ˇ Oj ��1 C �N ; ˇ Oj � � �N / for some Oj �. We can then conduct
inference for r�

1 by using the distribution of ı|
‚ for which theorem 4 can be applied. Inference will

be conservative in case V but case V is extreme.
Theorem 8 does not distinguish case V from the other four cases. In fact, Og� is the only relevant

object for the limit distribution of �. Or1; Og�/. This phenomenon is an implication of the envelope
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6.4 Numerical experiments

theorem. Indeed, in cases I and V, both the right and left derivatives of �.�; g�/ at r�
1 are zero. In

case II, neither of the directional derivatives is zero but
p
N. Or1 � r�

1 / is asymptotically negligible.
Similar arguments apply to cases III and IV, also. Therefore, inference on maximum revenue is
straightforward: we can use theorem 4 without knowing which case is relevant.

6.4 Numerical experiments: Like in section 4 we simulated bids from English auctions using
Beta.0:5; 0:5/;Beta.1; 1/, and Beta.2; 2/ as the distributions of valuations. The true values of the
bounds and ME solutions were computed by simulation.

Like in section 4 we estimate the boundsD0 using empirical distribution functions, where we do
not smooth out the minimum function for the upper bound. Since the distribution of ˆ is generally
not normal, we use subsampling to obtain random draws from it.

Tables 5 and 6 show the coverage rates of our 95% confidence intervals for g� at each node
for N D 1000 with n D 2; 3 and � D 0:1; we also tried N D 500 and N D 700 but the results
are largely the same. We used � D c�0 with c D 0:5; 1; 1:5 and �0 D const

p
logN=N for every

node, where const was chosen by multiplying the maximum gap between the upper and lower bound
estimates and the largest standard deviation of (the subsample version of) ˆ.44 In these experiments
the performance of the procedure is decent, though conservative, except around the two end points.

However, in experiments not reported here, we found that the performance can be poor when
the number of bidders is large. This can be explained partly by the fact that the joint distribution of
the bounds is poorly estimated when the number of bidders is large. Since the ME estimates can be
computed efficiently, it can be beneficial to subsample them given that our theory already shows
that the solutions have stable distributional behavior in the limit.

� D 1 � �0 r1.g
�/ P .g�/

Beta(0.5,0.5), n=2 0.9974 0.9930

Beta(0.5,0.5), n=3 0.9956 0.9928

Beta(1,1), n=2 0.9990 0.9994

Beta(1,1), n=3 1.0 0.9966

Beta(2,2), n=2 0.9834 0.9388

Beta(2,2), n=3 0.9928 0.9830

Table 6: Coverage rates with nominal rate 0.95: N=1000 and 5000 replications.

44Checking all subsets between QK and QK� is NP hard in general, but it is typically feasible if �N is relatively small.
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Appendices

A. Optimal auctions

Myerson (1981)’s trict monotonicity assumption on the so–called virtual valuation function implies
the strict pseudoconcavity of the function Q. Therefore, Myerson (1981)’s results show that absent
strict pseudoconcavity of Q a second price auction is not necessarily optimal.

With the maximum entropy value distribution in hand, one can construct a Myerson optimal
auction, which can yield higher expected revenue for the seller than a second price auction with a
maximum entropy optimal reserve price. Doing so would be impossible if one merely had bounds
on the value distribution function.

The optimal auction mechanism works as follows. Let

T �.q/ D �F �1.q/.1 � q/; q 2 Œ0; 1�; (19)

and let T be its convex hull, i.e. the maximum convex function below or equal to T �. Define

C.v/ D T 0
fF.v/g:45 (20)

C is continuous and nondecreasing, which plays a critical role in describing the allocation rule
of Myerson’s optimal auction. If T � were convex already, then C would be the same as C � with
C �.v/ D v � f1 � F.v/g = f .v/, which would be increasing.

To see how Myerson’s allocation rule can be different from that of a second price auction, suppose
that n D 2 and v1 > v2. We continue to assume that the seller values the object at zero. Let r�

m denote
the smallest value of v for which C.v/ D 0. Further, define Nb D max

�
maxfv W C.v/ D C.v2/g; r

�
m

�
,

and let
N
b be the greater of r�

m and minfv W C.v/ D C.v2/g. If v1 > Nb then player 1 wins the auction
and pays . Nb C

N
b/ = 2. If v1 � Nb then each player wins the auction with probability 1 = 2 and the

winner pays
N
b. If C were strictly convex then

N
b D Nb D max.v2; r

�
m/ and we would be back in the

standard second price auction case.
To illustrate, consider figure 12 which is based on a value distribution that is a mixture of Betas.46

Here, as is apparent from the dotted lines, r�
m D 0:2. If v1 < r

�
m then the object is not sold and if

v2 < r
�
m < v1 then player 1 wins the auction and pays r�

m. So suppose that v2 � r�
m. If v2 belongs

to an area in which C is increasing (i.e. not flat) then player 1 wins and pays v2. Finally, suppose
that v2 is in an area in which C is flat, say the large flat segment that extends from about 0.38 to
about 0.70. If v1 is also between 0.38 and 0.70 then each player wins with probability 0.50 and the

45We are ignoring the easily addressed nuisance that T may not be differentiable at a countable set of points.
460.95 times a Beta(2,10) plus 0.05 times a Beta(20,2). The corresponding Q function has two distinct local maxima.

See section 4.
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Figure 12: The functions C � (blue dashed) and C (green solid) for a mixture of Betas.

winner pays 0.38. Otherwise, player 1 wins with certainty and pays 0.54.

As noted, the Myerson mechanism yields an expected profit for the seller that is equal to or
exceeds that of a second price auction with an optimally chosen reserve price. However, the difference
in expected profit is generally small. For instance, in the example of figure 12 the difference is about
0.001 despite the substantial convexity correction evidenced by the difference between dashed and
solid lines in figure 12. This is not entirely surprising in view of Hartline (2016, corollary 5.3),

which provides bounds on the gain from an optimal auction compared to a second price one and is a
corollary to the Bulow–Klemperer theorem (Bulow and Klemperer, 1996), albeit that the bounds are
fairly wide if the number of bidders is small. Further, as noted, it can be cumbersome to implement
Myerson’s auction in practice.

We therefore focus on the choice of an optimal reserve price in a second price auction in the
remainder of this paper.

B. Entropy, maxmin, and decision theory

We now provide a decision–theoretic view of the ME solution, which is the focus of this paper.
Specifically, we consider choosing the reserve price to maximize minimum expected revenue where
the minimum is taken over all distributions which satisfy the bound constraints and are moreover
such that their entropy is bounded below by a prespecified value E�. Like in AK, the seller is
ambiguity–averse but she now also wants to rule out value distributions that are too crazy. Thus, E�

represents a tradeoff between ambiguity–aversion and plausibility. In this framework the AK and
ME solutions can be understood as special cases: the AK solution corresponds to the case in which
E� D �1, whereas the ME solution obtains if E� is the maximum achievable entropy.
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The worst case revenue for given E� is

min
f�0

Q�.r;F / subject to

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�

Z 1

0

f .s/ log f .s/ ds � E�;Z 1

0

f .s/ ds D 1;

8v WFL.v/ �

Z v

0

f .s/ ds � FU .v/;

(21)

where Q� is given in (1), E� is the minimum desired entropy level, and FU ;FL are still the identified
bounds of the distribution function of valuation. Below we show how to solve (21). We focus on the
simplest case, i.e. the case with two bidders: if the number of (independent) bidders is large then
choosing the optimal reserve price becomes less important.

The problem in (21) involves infinite–dimensional objects and its solution is not generally
closed–form. However, it can always be reformulated as a finite–dimensional parametric problem.

To see this, note that FU ;FL are step functions, so the distribution bound constraints in (21) only
contain finitely many restrictions. We can thus write the problem as

min
f�0

�
2r NF .r/ � r NF 2.r/C

Z 1

r

NF 2.v/ dv
�

subject to

8̂̂̂̂
<̂
ˆ̂̂:

�

Z 1

0

f .s/ log f .s/ ds � E�;

NF .1/ D 0;

1 � ‡0j � NF . ǰ / � 1 �ƒ0j ; j D 1; 2; : : : ; J;

(22)

where NF .v/ D 1 � F .v/, ƒ0j D FL. ǰ /, and ‡0j D FU . ǰ �1/ as explained right below (4).

We then use the first order condition from variational calculus to obtain the following result. Let
kr D minfj W ǰ � rg, NZ D NF .r/, and Mj D F . ǰ /, where we focus on r > 0.

Theorem 9. The solution F to (22) is such that (i) NF is continuous; (ii) for v � r , NF is piecewise
linear; and (iii) for v > r ,

NF .vI˛; �; !; Q̌/ D

(
�˛!j tan

˚
.�j � v/!j

	
for max. ǰ �1; r/ � v < min. Q̌

j ; ǰ /

1 � ‡0j for min. Q̌
j ; ǰ / � v < ǰ ;

(23)

for ˛ < 0 and kr � j � J C 1. Further, if neither inequality condition holds with equality at ǰ

then !j D !j C1 and �j D �j C1. Finally, the parameter vectors �; !, and Q̌ are known functions of
NZ; ˛, and the identities of the distribution bound inequalities that hold with equality.

The proof of theorem 9 is provided in appendix E. The shape of NF for v � r does not affect
expected profit, so for v � r the solution coincides with the ME solution. The parametric function
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F .�I˛; �; !; Q̌/ turns out to be the unique solution to a differential equation implied by the first
order condition of (22). Here, ˛ is the Lagrange multiplier for the entropy constraint, and !; �
are parameters that show up in the solution to the differential equation. The Q̌–parameters appear
when the sign restrictions on f produce corner solutions. The intuition for this is as follows. As
E� ! �1, the solution gets closer to AK’s pure maxmin solution, i.e. the upper bound of the value
distribution, which is discrete. Unless E� is large negative, Q̌

j D ǰ .

Theorem 9 says that ˛ < 0 in the solution: the entropy constraint is binding for any finite E�.

However, as we will show later in this section, the solution to (21) is continuous in E�; ƒj 0; ‡0j .

As E� ! �1, ˛ ! 0, eventually resulting in Q̌
j < ǰ .

It is convenient that the problem can be characterized as an optimization problem in two unknowns
if one fixes r and the identities of the bound constraints that hold with equality. This is explained in
the proof in appendix E.

By using theorem 9 we compute the solution to (22) in multiple steps. Fixing the set of constraints
that hold with equality and the values of NF .r/ and the Lagrange multiplier for the entropy constraint,
we solve the parametric problem, which we then minimize over all candidate values of NF .r/ and the
entropy constraint Lagrange multiplier. For each set of constraints we thus have a solution. Finally,

we minimize over all finitely many binding constraint sets.
We have implemented our method in three designs. The results of our efforts are depicted

in figures 13 to 16: Figures 13, 15 and 16 depict the distribution function for which expected
profit is minimized for the entropy–constrained maxmin solution for r . Figure 14 depicts the
entropy–constrained minimum profit functions as a function of the reserve price.

In all three designs the nodes are at 0; 0:2; : : : ; 0:8; 1. The main difference between the designs
is in the bounds: in figures 13, 15 and 16 the lower bounds are yellow and the upper bounds are
blue. In all cases, the optimal r was chosen from the grid 0:01; 0:03; : : : ; 0:99.

For each design, four different values of E� were used: -10.0, -1.0, -0.1, -0.01 for design 1 and
-10.0, -1.0, -0.1, -0.05 for designs 2 and 3. The reason for the discrepancy is that for the bounds
used in designs 2 and 3 there exist no distributions that yield an entropy value in excess of �0:01.

In design 1, the uniform distribution is the maximum entropy solution resulting in an optimal
reserve price equal to 0.5. As can be seen in figures 13 and 14, for E� D �0:01 our methodology
produces a profit function close to the profit function for a uniform value distribution and a distribution
function at the optimal reserve price close to a uniform. As E� decreases, however, the distribution
function to the right of r places more weight on values slightly above node values. This is natural,
since putting a lot of weight there corresponds to having a pessimistic view of the world. Since the
profit is unaffected by the shape of the distribution left of r , the distribution left of r is for all values
of E� fairly regular.

Now, minimum expected profit as a function of r for design 1 has an intuitive shape, also. For
large negative values of E�, we get the familiar sawtooth pattern with drops at each of the nodes.
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Figure 13: The graphs depict the distribution functions of the least favorable distribution for the
optimal choice of r in design 1, where the least favorable distribution is determined by taking the
minimum over all distributions whose entropy exceeds a threshold E�: each panel corresponds to a
different choice of E�. In all cases the nodes are at 0; 0:2; : : : ; 1:0. The graphs were created using a
grid of r–values, namely 0:01; 0:03; : : : ; 0:99. The maximal value of r is indicated by a vertical
dotted line.

The drop arises because if the seller sets the reserve price above the node value then she loses
revenue from all bidders with values between the node value and r : for large negative values of E�

the distribution of values is concentrated near the node values.
In design 2, the uniform distribution does not satisfy the bound constraints and hence the solution

for values of E� close to zero is not a uniform and E� cannot be pushed to 0. Like with design 1, the
profit function becomes more sawtoothed as E� decreases because the least favorable distribution
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Figure 14: The graphs depict minimum expected profit as a function of r for three different choices
of upper and lower bounds. The minimum at each value of r is taken over all distributions whose
entropy exceeds a threshold E�: each curve in a given panel corresponds to a different choice of E�

with greater values of E� resulting in higher expected profit. In all cases the nodes are at
0; 0:2; : : : ; 1:0. The graphs were created using a grid of r–values, namely 0:01; 0:03; : : : ; 0:99.

function at each r gets closer to the unconstrained least favorable distribution. In other ways, design
2 is similar in behavior to design 1.

We deliberately chose a fairly extreme case for design 3 with an upper bound that is constant
over a large range of values. That said, the solution would be much the same if the upper bound
increased only slightly going from one node value to the next. In contrast to designs 1 and 2, the
optimal reserve price changes dramatically depending on the choice of E� and so does expected
profit. For instance, if the seller sets the optimal reserve price according to E� D �10 then her profit
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Figure 15: The graphs depict the distribution functions of the least favorable distribution for the
optimal choice of r in design 2, where the least favorable distribution is determined by taking the
minimum over all distributions whose entropy exceeds a threshold E�: each panel corresponds to a
different choice of E�. In all cases the nodes are at 0; 0:2; : : : ; 1:0. The graphs were created using a
grid of r–values, namely 0:01; 0:03; : : : ; 0:99. The maximal value of r is indicated by a vertical
dotted line.

is substantially less if the actual value distribution is closer to the maximum entropy distribution.

The converse is also true, but the loss is less.
As promised, we conclude by showing that the solution to (22) has some continuity properties.

Let QE�.D0/ be the maximum entropy level that is attainable for given D0 D Œƒ
|

0; ‡
|

0 �
|. Define

NE� D infD02D
QE�.D0/, where D is an arbitrary neighborhood of D0. We denote the solution to

(22) by ��.r;E�;D0/, which is a function on Œ0; 1� � Œ
N
E�; NE�� � D for

N
E� > �1.
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Figure 16: The graphs depict the distribution functions of the least favorable distribution for the
optimal choice of r in design 3, where the least favorable distribution is determined by taking the
minimum over all distributions whose entropy exceeds a threshold E�: each panel corresponds to a
different choice of E�. In all cases the nodes are at 0; 0:2; : : : ; 1:0. The graphs were created using a
grid of r–values, namely 0:01; 0:03; : : : ; 0:99. The maximal value of r is indicated by a vertical
dotted line.

Theorem 10. The function �� is continuous on Œ0; 1� � Œ
N
E�;E�� � D. Further, Qr.E�;D0/ D

argmaxr �
�.r;E�;D0/ is upper–hemicontinuous on Œ

N
E�; NE�� � D.

The proof of theorem 10 can be found in appendix F.

In the remainder of the paper we assume that the seller shares our preference for choosing E�

maximally, i.e. for maximum entropy.
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C. Lemmas for the solution

Proof of lemma 3.1: Fix any j ı 2 f1; 2; � � � ; J C 1g and let A D
˚
f W 8s 62 Ij ı W f .s/ D f �.s/

	
.

Then f � is not only a solution to (3), but since FL;FU are flat on Ij ı also to

min
f 2A

Z
ǰ ı

ǰ ı�1

f .s/ log f .s/ ds s.t.

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

Z
ǰ ı

ǰ ı�1

f .s/ ds D cj ı;

8v 2 Ij ı W FL. ǰ ı�1/ � S C

Z v

ǰ ı�1

f .s/ ds � FU . ǰ ı�/;

FL. ǰ ı/ � S C

Z
ǰ ı

ǰ ı�1

f .s/ ds � FU . ǰ ı�/

where cj D
R

ǰ

ǰ �1
f �.s/ ds, S D

Pj ��1
j D1 cj , and FU . ǰ ��/ D limv" ǰ � FU .v/: the last inequality

constraint is a condition coming from the fact that F .�/ is a continuous function.

Because f � satisfies the inequality constraints, we must have FL. ǰ ı�1/ � S � S C cj ı �

FU . ǰ ı�/ and FL. ǰ ı/ � S C cj ı , and therefore the inequality constraints are redundant. Hence
f � is constant on Ij ı .

The Karush–Kuhn–Tucker (KKT) conditions for minimizing (7) subject to (8) are for j D

1; : : : ; J given by 8̂̂̂̂
<̂̂
ˆ̂̂̂:

logg�
j � log.1 �G�

J /C
PJ

kDj .�
�

uk
� ��

`k
/ D ��

sj ;

��
uj .G

�
j � ‡0j / D 0; G�

j � ‡0j ; ��
uj � 0;

��

j̀ .G
�
j �ƒ0j / D 0; G�

j � ƒ0j ; ��

j̀ � 0;

��
sjg

�
j D 0; g�

j � 0; ��
sj � 0:

(24a)

(24b)

(24c)

(24d)

Recall that 
�
j D ��

uj � ��

j̀
, where ��

uj�
�

j̀
D 0. Here, if g�

j D 0, then the conditions in (24a)
and (24d) cannot be satisfied simultaneously. Thus g�

j > 0 and ��
sj D 0 for all j .

Lemma C.1. The solution g� depends on which constraints are binding but is otherwise an affine
function of ‡0; ƒ0. Therefore, each of the SK sets defined in (9) is a polyhedron.

Proof. Note that ��
uj�

�

j̀
D 0 for all j because ‡0j � ƒ0j .47 So, the conditions in (24a) to (24c)

contain 2J unknowns: g�
1 ; : : : ; g

�
J and 
�

1 ; : : : ; 

�
J . We need to solve8̂̂̂<̂

ˆ̂:
logg�

j � log.1 �G�
J /C

JX
kDj


�

k D 0;


�
j .G

�
j � Bj 0/ D 0;

(25a)

(25b)

47It would be more precise to say that there exist solutions for which ��
uj�

�
j̀

D 0 because the Lagrange multipliers
are not unique when ‡0j D ƒ0j .
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for j D 1; : : : ; J , where Bj 0 is either ‡0j or ƒ0j . The conditions in (25a) imply that


�
j D logg�

j C1 � logg�
j ; j D 1; 2; � � � ; J; (26)

where g�
J C1 D 1 �G�

J . Suppose that there are r multipliers 
�
j that equal zero and J � r that are

nonzero. For 
�
j ¤ 0, by (25b) we have G�

j D Bj 0. For 
�
j D 0, (26) implies that g�

j C1 D g�
j with

1 �G�
J D g�

J as a special case. Therefore, g� D Œg�
1 ; � � � ; g

�
J �

| is the solution to a linear equation
system whose right hand side is linear in the Bj 0’s.

Lemma C.2. The solutions g�; 
� are continuous functions of ‡0; ƒ0.

Proof. It suffices to show the continuity of g�: the continuity of 
� then follows from (26). The
solution g� D Œg�

1 ; � � � ; g
�
J �

| minimizes Q (defined in (7)) subject to g 2 „.‡0; ƒ0/, where „ is
the correspondence „.‡0; ƒ0/ D

˚
g W ƒ0j �

Pj

kD1
gk � ‡0j for j D 1; 2; � � � ; J

	
: Since Q is

a continuous function and„ is a continuous correspondence, it follows from the maximum theorem
that g� D gı.‡0; ƒ0/ is upper hemicontinuous as a correspondence. Further, by the convexity of
the problem, gı.‡0; ƒ0/ is a single element correspondence, i.e. a function, and therefore upper
hemicontinuity is equivalent to continuity.

Proof of theorem 2: Follows from lemma C.2 and the continuous mapping theorem.

D. Sensitivity of the solution

In this section we consider the effect on the solution g� of perturbations of‡0; ƒ0 in a given direction
d . We will use these results for statistical inference.

Recall that S D fSKg is a (finite) partition of Œ0; 1�2J , where SK is defined in (9). As we
discussed in section 6, the solution gı.D/ at D D Œ‡

|
; ƒ

|
�
|

2 SK can be expressed as

gı.D/ D argmin
g

Q.g/ subject to R
|

Kg D DK ; (27)

whereRK is a matrix of ones and zeroes with full column rank andDK D Œ‡Ku
; ƒK`

� is a subvector
of D that is determined by K D .Ku; K`/; if none of the constraints in SK are binding (i.e.
Ku D K` D ;) then the restrictions in (27) evaporate.

Now, suppose that we perturb a given D0 D .‡
|

0 ; ƒ
|

0/
|

2 SK0
in the direction d , where SK0

is implicitly defined. So we consider D0 C td , where d is given and t > 0 is small. The most
important insight is that for all sufficiently small t > 0,D0 C td lies within the set SKd

which only
depends on d . The following lemma formalizes this idea.

Lemma D.1. There exist an SKd
2 S and an � > 0 such that D0 C td 2 SKd

for all 0 < t < �.
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Proof. IfD0 is in the interior of SK0
, then the assertion is true with SKd

D SK0
. Suppose thatD0 is

on the boundary of SK0
. By lemma C.1 all SK sets in S are polyhedra, and therefore there are only

four possibilities: for a sufficiently small � > 0, the (open) line segment fD0 C td W 0 < t < �g (i) is
a subset of the boundary of SK0

; (ii) is a subset of the boundary of some SK ¤ SK0
; (iii) belongs to

the interior of SK0
; (iv) belongs to the interior of some SK ¤ SK0

.

By lemma D.1, for all sufficiently small t > 0, the solution at D0 C td is given by

gı.D0 C td / D argmin
g

Q.g/ subject to R
|

Kd
g D D0Kd

C tdKd
; (28)

whereD0Kd
; dKd

are the subvectors ofD0; d corresponding to the indices inKd D .Kdu; Kd`/, as
described in the paragraph after (10). The formulation in (28) is convenient for obtaining directional
derivatives of g�.

Now, note that

lim
t#0
gı.D0 C td / D argmin

g

Q.g/ subject to R
|

Kd
g D D0Kd

: (29)

Since gı is continuous by lemma C.2, (29) is equivalent to

gı.D0/ D argmin
g

Q.g/ subject to R
|

K0
g D D0K0

; (30)

where D0K0
is a subvector of D0 defined b K0 D .K0u; K0`/ as in (10).48

So the directional derivative rgı.D0; d / of g� at D0 in the direction d can be obtained by
differentiating (28) with respect to t .49 Recall H be the Hessian of the objective function Q at g�.

Lemma D.2. (i) If Kd D .;;;/ then rgı.D0; d / D 0. (ii) Otherwise,
rgı.D0; d / D H�1RKd

�
R

|

Kd
H�1RKd

��1
dKd

:

Proof. Since part (i) is trivial, we prove part (ii). Note that H is positive definite: the typ-
ical element hij is given by hij D

˚
1.i D j / = g�

i

	
C .1 = g�

J C1/: The first order con-
ditions of (28) are @gQfgı.D0 C td /g D RKd

�.t/ and R|

Kd
gı.D0 C td / D DKd

C tdKd
,

where �.t/ is the vector of the Lagrange multipliers. By differentiating with respect to t at
0, we obtain Hrgı.D0; d / D RKd

@t�.0/ and R|

Kd
rgı.D0; d / D dKd

, which implies that
dKd

D R
|

Kd
H�1RKd

@t�.0/. Therefore, the assertion follows.
48Although SK0

and SKd
need not be the same whenD0 is a boundary point, equivalence of (29) and (30) is intuitive.

Indeed, suppose that D0 is a boundary point of SK0
and D0 C td 2 SKd

for all sufficiently small t > 0, where
K0 ¤ Kd . Now, K0 � Kd because 
ı

j .�/ is continuous in view of lemma C.2. Thus, any constraints that are binding at
D0 C td become redundant in the limit.

49So, for Ng� ı .t/ D gı.D0 C td /, rgı.D0; d / D @t Ngı.0/.
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Lemma D.3. 
� is directionally differentiable at D0. If Kd D .;;;/ then r
ı
j .D0; d / D 0.

Otherwise,
ˇ̌
r
ı

j .D0; d /
ˇ̌

�


�
R

|

Kd
RKd

��1
Hrgı.D0; d /



.

Proof. By continuity of 
�
j , there are three relevant cases: (i) 
ı

j .D0/ D 0 and 
ı
j .D0 C td / D 0;

(ii) 
ı
j .D0/ D 0 and 
ı

j .D0 C td / ¤ 0; (iii) 
ı
j .D0/ ¤ 0 and 
ı

j .D0 C td / ¤ 0. In the first
case, r
ı

j .D0; d / D 0. In the other two cases, r
ı
j .D0; d / is an element of @t�.0/ in the proof of

lemma D.2.

Proof of theorem 3: We first show that OZ D rgı
�
D0; Od = k Odk

�p
N k Odk C op.1/; where Od D

OD �D0. Let for any distance � > 0 and direction a with kak D 1,

�N .a; �/ D
p
N

˚
gı

�
D0 C �a =

p
N

�
� gı.D0/

	
� rgı.D0; a/�:

From lemma D.2, we know that �N .a; �/ D o.1/ for any a; �. Now, for any measure � and any
� > 0,

’
1
˚
k�N .a; �/k > �

	
d�.a; �/ D o.1/; by the dominated convergence theorem. Let

O� D
p
N k Odk and Oa D

p
N Od = O�. Take � to be the distribution of . Oa; O�/. Therefore, the boundary

case is proved since OD 2 S OK
is always true by definition. For the interior case, it follows from the

fact that D0 2 int.SK0
/ implies OD 2 SK0

with probability approaching one.

E. Hybrid problem — solution

Proof of theorem 9: The first order conditions to (22) are given by

2rF .r/1.v � r/C2

Z 1

max.v;r/

NF .s/ dsC˛
˚
log f .v/C1

	
�

JX
j D1

. Q
j � M
j /1.v � ǰ /C Q� D 0; (31)

and 8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�

Z 1

0

f .v/ log f .v/ dv D E�;

Q
j

�Z
ǰ

0

f .s/ ds � ‡0j

�
D 0;

M
j

�Z
ǰ

0

f .s/ ds �ƒ0j

�
D 0;

j D 1; : : : ; J; (32)

where Q
j ; M
j � 0 and ˛ < 0: ˛ cannot be zero since then FU minimizes the profit which implies
E� D �1. Therefore, for k D 1; 2; : : : ; J and ˇk�1 < v � ˇk, we have

2rF .r/1.v � r/C 2

Z 1

max.v;r/

NF .s/ ds C ˛
˚
log f .v/C 1

	
�

JX
j Dk

. Q
j � M
j /C Q� D 0: (33)
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Now, for v � r , the solution f to (33) is piecewise constant. For v > r , differentiating (33)

yields

2 NF .v/ � ˛
f 0.v/

f .v/
D 0; (34)

whenever f .v/ > 0. Therefore, there is no loss of generality in merging .ˇk�1; ˇk� and .ˇk; ˇkC1�

when the distribution bound constraints are not holding with equality at ˇk. Below we focus on
.ˇk�1; ˇk�, where we have Q
k�1 > 0 and Q
k > 0, i.e. the (upper) bounds at the two end points are
binding; binding lower bounds are dealt with analogously.

If f .v/ D 0 at any v 2 .ˇk�1; ˇk� then there must be some Q̌
k 2 .ˇk�1; ˇk� such that f .v/ D 0

for all Q̌
k < v � ˇk: putting f .v/ D 0 anywhere other than on the right side of .ˇk�1; ˇk� would

not minimize profit. So (34) must be satisfied for all ˇk�1 < v � Q̌
k. The proposed parametric

form of f is a solution to the second order differential equation in (34).

To see that the final statement of the theorem is true consider the following. By the definition
of kr we start with 3.J C 2 � kr/ unknowns: one set f!j ; �j ; Q̌

j g for each interval. We have
NF .r/ D NZ and NF .1/ D 0 as two binding equalities. Suppose that there are no binding constraints

at ˇkr
; ˇkrC1

; : : : ; ˇJ . Then Q̌
j D ǰ , !j D !j C1, and �j D �j C1 for all j � kr . That gives us

2 C .J C 2 � kr/ C 2.J C 1 � kr/ D 3.J C 2 � kr/ equalities, as desired.50 If a constraint is
binding at some ǰ then we have two intervals with binding endpoint constraints and the above
argument can be repeated for each interval separately. For large negative values of E� it can happen
that there are no values of !j ; �j to make both bounds at the endpoints of the interval binding in
which case Q̌

j is set to the largest value for which both bounds can be made binding and !j ; �j are
then the corresponding solutions.

F. Hybrid problem — continuity

We now turn to the proof of theorem 10. Let ` D 1; : : : ; NL denote each of the cases in which the
identity of the inequality constraints that hold with equality is given. Define �ı

`
. NZ; ˛;E�;D0I r/ to

be the minimum revenue for a given r as a function of NZ D NF .r/; ˛;E�, and D0. So,

��.E�;D0I r/ D min
`D1;2;��� ; NL

�
min

. NZ;˛/2C`.E�;D0/

�ı

` .
NZ; ˛;E�;D0I r/

�
; (35)

where C` is a correspondence defined by

C`.E
�;D0/ D

˚
. NZ; ˛/ W entr`. NZ; ˛;D0/ � E�; ƒ0j � F`. ǰ I NZ; ˛/ � ‡0j

	
; (36)

50The equalities are nonlinear, but that is a minor nuisance. For example, consider the case where 0 < r < ˇ1 so that
kr D 1. Then we must have !1 D !2 D � � � D !J C1 and �1 D � � � D �J C1, which leads to the following two equations:
˛!1 tanf.�1 � r/!1g D � NZ and ˛!1 tanf.�1 � 1/!1g D 0. Our computations have not revealed invertibility problems.
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where F`. ǰ I NZ; ˛/ is the distribution function that has the parametric form described in theo-
rem 9 after partialing out �; !; Q̌ and entr` is the entropy level corresponding to F`.�I NZ; ˛/. So
F`. ǰ I NZ; ˛/ D F

˚
ǰ I˛; �`. NZ; ˛/; !`. NZ; ˛/; Q̌

`. NZ; ˛/
	
, where �`; !`, and Q̌

` are defined by recur-
sively solving for �; !, and Q̌ for given values of NZ; ˛, and the identity ` of the bound constraints
that hold with equality as explained in appendix E. Note that F`. ǰ I �; �/ is a continuous function for
all j . The function entr`.�; �; �/ can similarly be shown to be continuous.

Lemma F.1. For any E� 2 Œ
N
E�; NE�� and D0, C`.E

�;D0/ is compact.

Proof. Since NZ is a probability and ˛ is a Lagrange multiplier, C`.E
�;D0/ is a bounded set. The

closedness of C`.E
�;D0/ follows from continuity of entr`.�; �; �/ and F`. ǰ I �; �/.

Lemma F.2. The correspondence C` is continuous on Œ
N
E�; NE�� � D.

Proof. Since entr`.�; �; �/ and F`. ǰ I �; �/ are continuous, by lemma F.1 the graph of C` is closed
and the image of C` is compact. Hence, C` is upper–hemicontinuous. We now show that C` is
also lower–hemicontinuous. Choose an arbitrary point .E�;D0; NZ; ˛/ from the graph of C`. Let
.E�

n ;Dn/ be an arbitrary sequence in Œ
N
E�; NE�� � D that converges to .E�;D0/ as n ! 1. We

need to show that there exists f. NZn; ˛n/ W n D 1; 2; � � �g such that . NZn; ˛n/ 2 C`.E
�
n ;Dn/ for all

sufficiently large n and for which . NZn; ˛n/ ! . NZ; ˛/. Let f�ng be a sequence such that �n # 0 and
�n � E� � E�

n � 2�n. Since entr`.�; �; �/ is continuous at . NZ; ˛;D0/, there exists ın # 0 such that

. Nz; a; d/ 2 Nın
. NZ; ˛;D0/ H)

ˇ̌
entr`. Nz; aI d/ � entr`. NZ; ˛ID0/

ˇ̌
� �n; (37)

where Nın
is a ın–neighborhood. Choose n large enugh to ensure that Dn is in a ın neighborhood

of D0. Then choose . NZn; ˛n/ such that . NZn; ˛n;Dn/ 2 Nın
. NZ; ˛;D0/. It follows that for all

such n, E� � �n � entr`. NZ; ˛;D0/ � �n � entr`. NZn; ˛nIDn/; where the first inequality holds
because .E�;D0; NZ; ˛/ belongs to the graph of C` and the second inequality follows from (37).

Now choose E�
n such that E� � 2�n � E�

n � E� � �n. Then by definition we have E�
n � E� � �n �

entr`. NZn; ˛nIDn/ and . NZn; ˛n/ ! . NZ; ˛/. Repeat the argument for F` in lieu of entr`.

Proof of theorem 10: For continuity of �� it suffices to show that

��

` .E
�;D0I r/ D min

. NZ;˛/2C.E�;D0/

�ı

` .
NZ; ˛;E�;D0I r/

is a continuous function for each `. Continuity in r is trivial. Continuity in E� and D0 follows from
the theorem of the maximum because of lemmas F.1 and F.2. Finally, since �� is continuous, upper
hemi–continuity of Qr follows from the theorem of the maximum as well.
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G. Constraint selection and inference

Proof of lemma 6.1: If D0 2 int.SK0
/, then by the definition of SK0

and the KKT conditions,8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:


ı
j .D0/ > 0;

jX
kD1

gı

k.D0/ D ‡0j for j 2 Ku0;


ı
j .D0/ D 0;

jX
kD1

gı

k.D0/ < ‡0j for j … Ku0;


ı
j .D0/ < 0;

jX
kD1

gı

k.D0/ D ƒj 0 for j 2 K`0;


ı
j .D0/ D 0;

jX
kD1

gı

k.D0/ > ƒj 0 for j … K`0:

(38)

Therefore, K�
u0 D Ku0 and K�

`0
D K`0 by definition. Now, instead suppose that D0 2 bdr.SK0

/.

Then, there exist j … Ku0 [ K`0 and fDtg with Dt ! D0 such that 
ı
j .Dt/ ¤ 0 for all t but


ı
j .Dt/ ! 
ı

j .D0/ D 0. Fix such j and fDtg. By the KKT conditions, for all t we have eitherPj

kD1
gı

k
.Dt/ D ‡jt or

Pj

kD1
gı

k
.Dt/ D ƒjt . Therefore, it follows from lemma C.2 that we

have either
Pj

kD1
gı

k
.D0/ D ‡0j or

Pj

kD1
gı

k
.D0/ D ƒj 0, so j 2 K�

u0 [ K�

`0
D K�

0 and hence
K0 ¤ K�

0 .

Proof of lemma 6.2: Let O
�
j D 
ı

j .
OD/ and 
�

j 0 D 
ı
j .D0/. First parts (a) and (b). By theorem 3

and assumption A, OZ D Op.1/. By lemma D.3 and theorem 3, we also have
p
N. O
�

j � 
�
j 0/ D

Op.1/. Since parts (a) and (b) are similar, we focus on part (a), for which it suffices to show
that P

�
QKu ¤ Ku0

�
D o.1/ and P

�
QK` ¤ K`0

�
D o.1/. By symmetry, it suffices to establish

the former, where 
�
j 0 is restricted to be nonnegative. If j … Ku0 then

p
N O
�

j D Op.1/. But
then, P.j 2 QKu/ D P

�p
N O
�

j >
p
N�N

�
D o.1/. Conversely, if j 2 Ku0 then 
�

j 0 > 0 and
p
N

�
O
�
j � 
�

j 0

�
D Op.1/, in which case P.j … QKu/ D P

�
O
�
j � �N

�
D P

˚p
N

�
O
�
j � 
�

j 0

�
�

p
N

�
�N � 
�

j 0

�	
D o.1/.

Now the uniform case. For part (a0) we note that P. QKu � Ku0/ D 1�P.9j W j … Ku0; j 2 QKu/.

But note that j … Ku0 requires that 
�
j 0 D 0; it is insufficient that it converges to 0. Part (b0) is

similar. For the final assertion, we focus on the upper bounds, and we note that O
�
j > �N ) O
�

j >

0 )
Pj

kD1
Og�

k
D O‡j )

Pj

kD1
Og�

k
> O‡j � �N . The argument for the lower bounds is similar.

Proof of theorem 4: By lemma 6.1, P. OT ¤ T / D o.1/. Suppose first thatD0 is a boundary point,
such that by lemma 6.1 K0 ¨ K�

0 . By theorem 3 and lemma 6.2, and the continuity of G in its first
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argument,

P. OZ � x/ D P
˚
‚. O�; OK/ > x

	
C o.1/ � P

�
max

QK�K� QK�

‚. O�;K/ � x

�
C o.1/

D P

�
max

K0�K�K�
0

‚. O�;K/ � x

�
C o.1/ D P.T � x/C o.1/:

Now, suppose instead that D0 is an interior point. Lemma 6.1 implies that then K0 D K�
0 , such

that P. OZ � x/ D P
˚
‚.ˆ;K0/ � x

	
C o.1/ D P.T � x/C o.1/.

H. Optimal reserve price and maximum revenue

H.1 Consistency of ORN :

Proof of lemma 6.3: Follows from the fact that �.�; g�/ is continuous on Œ0; 1� and (strictly)

concave on each Ij .

Lemma H.1. supv2Œ0;1�

ˇ̌
Of

�

.v/ � f �.v/
ˇ̌
C supv2Œ0;1�

ˇ̌
OF �.v/ � F �.v/

ˇ̌
D Op.1=

p
N/.

Proof. It follows from (5) and (6) and theorem 3.

Lemma H.2. supr2Œ0;1�

ˇ̌
�.r; Og�/ � �.r; g�/

ˇ̌
D Op.1=

p
N/.

Proof. It follows from lemma H.1 and (1).

Lemma H.3.
ˇ̌
P . Og�/ � P .g�/

ˇ̌
D Op.1=

p
N/

Proof. Follows from lemma H.2.

Proof of theorem 5: Note that by continuity of �.�; g�/ and by lemma 6.3, R� D
˚
r W �.r; g�/ �

P .g�/ � �
	

consists for any sufficiently small � > 0 of a union of disjoint compact intervals
R�1; : : : ;R�m each containing one r�

j . Choose � > 0. By lemmas H.2 and H.3,8̂<̂
:

P. ORN 6� R�/ � P
h

max
r2Œ0;1�

˚
�.r; Og�/ � �.r; g�/

	
� P . Og�/ � P .g�/C � � �n

i
D o.1/;

P.R0 6� ORN / � P
h

max
r2Œ0;1�

˚
�.r; g�/ � �.r; Og�/

	
� P .g�/ � P . Og�/C �n

i
D o.1/:

Let � ! 0.
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H.2 Sensitivity

Proof of lemma 6.4: Note that r1. Og�/ ¤ Or1 ) r1. Og�/ 62 ORN;1. Now, r1. Og�/ 2 ORN with
probability approaching one because otherwise P . Og�/ � �N � �. Or1; Og�/ � �

˚
r1. Og�/; Og�

	
<

P . Og�/ � �N ; which is a contradiction. But since r1. Og�/
p
! r�

1 by construction, r1. Og�/ 2 ORN;1

because ORN;1 is the collection of elements in ORN that converges to r�
1 .

Lemma H.4. If Or
�

� r�

k
D op.1/ for some Or

�
2 ORN and some k D 1; : : : ; m then Or

�
� r�

k
D

Op

�p
�N

�
.

Proof. Let j � be such that r�

k
2 Ij � . If r�

k
> ǰ ��1 then Op.�N / D �. Or

�
; g�/ � �.r�

k
; g�/ '

@2
r�.r

�

k
; g�/. Or

�
� r�

k
/2 = 2.51 Since @2

r�.r
�

k
; g�/ < 0 it follows that Or

�
� r�

k
D Op.

p
�N /. If

r�

k
D ǰ ��1 then one should consider @C

r �.r
�

k
; g�/ and @�

r �.r
�

k
; g�/ separately. If both are nonzero

then it follows that Or
�

� r�

k
D Op.�N /. If either the right or left derivative equals zero then the

convergence rate is no worse than p
�N , as before.

Proof of theorem 6: Suppose first that m D 1. Consistency of Orm follows trivially from theorem 5
and lemma H.4 establishes that Orm � r�

m D Op

�p
�N

�
. We now argue that Om D m with probability

approaching one. Suppose that Om > m. Then OrmC1

p
! r�

m by theorem 5 and hence OrmC1 � r�
m D

Op

�p
�N

�
by lemma H.4. But the construction of ORN;mC1 implies that

3
p
�N D Q�N � OrmC1 � min ORN;m D OrmC1 � r�

m C r�
m � min ORN;m � OrmC1 � r�

m COp

�p
�N

�
;

which is at odds with OrmC1 � r�
m D Op

�p
�N

�
. So Om D m with probability approaching one and

the proof is complete for m D 1.

Now suppose that m D 2. Consistency and convergence rate of Orm�1 follow as above. Further,
Om � m with probability approaching one since max ORN

p
! r�

m. As established above Orm does not
converge to r�

m�1, so Orm must converge to r�
m and hence Orm � r�

m D Op

�p
�N

�
: Using the same

argument as when m D 1, now Om D m with probability approaching one. Iterate the argument
made for m D 2 for m > 2, noting that m is finite.

H.2 Sensitivity: Fixing a direction d , let ‰.d; t/ D
�
r1fgı.D0 C td /g � r1

˚
gı.D0/

	�
=t: The

existence of limt#0‰.d; t/ requires the Hadamard differentiability of r1 at g� D gı.D0/: the chain
rule fails if r1 is only directionally differentiable. So, we first consider the Hadamard directional
derivative of r1: for any vt D v C o.1/, rH r1.g

�; v/ D limt#0fr1.g
� C tvt/ � r1.g

�/g=t:

Lemma H.5. r1 is continuous at g�.

Proof. By the maximum theorem, QR1.g/ D argmaxr2A1
�.r; g/ is upper hemicontinuous. So, the

conclusion follows from the fact that QR1.g
�/ is a singleton.

51We define ' to mean that any remaining terms are asymptotically negligible.
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H.2 Sensitivity

Lemma H.6. For cases I–IV, rH r1.g
�; v/ D  g�.v/. First case I. By lemma H.5, we must have

ǰ ��1 < r1.g/ < ǰ � in a neighborhood of g�. Hence �fr1.g/; gg D 0 in a neighborhood of g�.

Apply the implicit function theorem.

For case II, note that �.�; g/ is an invertible function near r�
1 D ǰ ��1, that both � and its inverse

are continuous in g, and that � ’s inverse is flat in its first argument. For cases III and IV, combine
the arguments for cases I and II.

Lemma H.7. For case V and any vt D vC o.1/, we have lim supt#0

ˇ̌
r1.g

� C tvt/� r1.g
�/

ˇ̌
= t �

max
�
jv

|
ıj; jv

|
ı�j

�
:

Proof. Follows immediately by noting that

lim sup
t#0

ˇ̌
r1.g

� C tvt/ � r1.g
�/

ˇ̌
t

� max
�ˇ̌̌̌
@g�

C.r�; g�/

@r�C.r�; g�/

ˇ̌̌̌
;

ˇ̌̌̌
@g�

�.r�; g�/

@r��.r�; g�/

ˇ̌̌̌�
:

Lemma H.8. In cases I–IV we have r.r1ıg�/.D0; d / D rH r1
˚
g�;rgı.D0; d /

	
, where rH r1.g

�; v/

is given in lemma H.6. For V, we have lim supt#0j‰.d; t/j � max
˚
jrgı.D0; d /

|
ıj; jrgı.D0; d /

|
ı�j

	
:

Proof. Follows from lemmas D.2 and H.6.

Let Qd D . OD �D0/=k OD �D0k.

Lemma H.9. In cases I–IV, we have

p
N fr1. Og�/ � r1.g

�/g D rH r1
˚
g�;rgı.D0; Qd/

	p
N k OD �D0k C op.1/;

whereas in case V,

p
N jr1. Og�/ � r1.g

�/j � max
˚
jrgı.D0; Qd/

|
ıj; jrgı.D0; Qd/

|
ı�

j
	p
N k OD �D0k C op.1/:

Proof. Note that r1. Og�/ D r1
˚
g� C Qdk OD �D0k

	
. Using lemma H.8, apply the same logic as the

proof of theorem 3.

Proof of theorem 7: Follows from lemmas 6.4 and H.9.

Proof of theorem 8: The function � is differentiable in g and directionally differentiable in r , so

�.r; g/ � �.r�
1 ; g

�/ D @C
r �.r

�
1 ; g

�/max.0; r � r�
1 /C @�

r �.r
�
1 ; g

�/min.0; r � r�
1 /

C @g|�.r�
1 ; g

�/.g � g�/C o
�
jr � r�

1 j C kg � g�
k
�
;
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where @C
r and @�

r denote the right and left derivative, respectively. Therefore, by theorems 3 and 7,

p
N

˚
�. Or1; Og�/ � �.r�

1 ; g
�/

	
D @C

r �.r
�
1 ; g

�/max
˚
0;

p
N. Or1 � r�

1 /
	

C @�
r �.r

�
1 ; g

�/min
˚
0;

p
N. Or1 � r�

1 /
	

C @g|�.r�
1 ; g

�/
p
N. Og�

� g�/C op.1/: (39)

Now, note that by theorem 7,

1. @C
r �.r

�
1 ; g

�/ D 0 D @�
r �.r

�
1 ; g

�/ in cases I and V;

2.
p
N. Or1 � r�

1 / D op.1/ in case II;

3. @C
r �.r

�
1 ; g

�/ D 0 and
p
N. Or1 � r�

1 / � op.1/ � 0 in case III;

4. @�
r �.r

�
1 ; g

�/ D 0 and
p
N. Or1 � r�

1 / � op.1/ � 0 in case IV.

Therefore, the first right–hand side terms in (39) are asymptotically negligible in all cases.

References

Andrews, Donald WK and Gustavo Soares (2010). “Inference for parameters defined by moment
inequalities using generalized moment selection”. In: Econometrica 78.1, pp. 119–157.

Aryal, Gaurab and Dong-Hyuk Kim (2013). “A point decision for partially identified auction
models”. In: Journal of Business & Economic Statistics 31.4, pp. 384–397.

Athey, Susan and Philip A Haile (2002). “Identification of standard auction models”. In: Economet-
rica 70.6, pp. 2107–2140.

Avery, Christopher (1998). “Strategic jump bidding in English auctions”. In: The Review of Economic
Studies 65.2, pp. 185–210.

Bertsekas, Dimitri P (2015). Convex optimization algorithms. Athena Scientific Belmont.
Bulow, Jeremy and Paul Klemperer (1996). “Auctions versus negotiations”. In: The American

Economic Review, pp. 180–194.

Chernozhukov, Victor, Han Hong, and Elie Tamer (2007). “Estimation and confidence regions for
parameter sets in econometric models”. In: Econometrica 75.5, pp. 1243–1284.

Chesher, Andrew and Adam Rosen (2018). Econometric analysis of incomplete English auction
models. Tech. rep.

Coey, Dominic et al. (2017). “Ascending auctions with bidder asymmetries”. In: Quantitative
Economics 8.1, pp. 181–200.

Daniel, Kent D and David A Hirshleifer (1998). A theory of costly sequential bidding. Tech. rep.

Gilboa, Itzhak and David Schmeidler (1989). “Maxmin expected utility with non-unique prior”. In:

Journal of mathematical economics 18.2, pp. 141–153.

54



REFERENCES

Golan, Amos (2018). Foundations of info-metrics: Modeling, inference, and imperfect information.

Oxford University Press.
Grünwald, Peter D and A Philip Dawid (2004). “Game theory, maximum entropy, minimum

discrepancy and robust Bayesian decision theory”. In: Annals of Statistics, pp. 1367–1433.

Haile, Philip A and Elie Tamer (2003). “Inference with an incomplete model of English auctions”.
In: Journal of Political Economy 111.1, pp. 1–51.

Hansen, Lars Peter and Thomas J Sargent (2008). Robustness. Princeton university press.
Hardle, Wolfgang, Peter Hall, and Hidehiko Ichimura (1993). “Optimal smoothing in single-index

models”. In: The annals of Statistics, pp. 157–178.

Harremoës, Peter and Flemming Topsøe (2001). “Maximum entropy fundamentals”. In: Entropy
3.3, pp. 191–226.

Hartline, Jason D (2016). Mechanism design and approximation. draft.
Hsieh, Yu-Wei, Xiaoxia Shi, and Matthew Shum (2018). “Inference on estimators defined by

mathematical programming”. In: Available at SSRN 3041040.

Ichimura, Hidehiko (1993). “Semiparametric least squares (SLS) and weighted SLS estimation of
single-index models”. In: Journal of Econometrics 58.1-2, pp. 71–120.

Jun, Sung Jae and Joris Pinkse (2016). Point prediction under partial identification. Tech. rep. Penn
State.

Larsen, Bradley J (2014). “The efficiency of real-world bargaining: Evidence from wholesale used-
auto auctions”. In: The Review of Economic Studies.

Myerson, Roger B (1981). “Optimal auction design”. In: Mathematics of operations research 6.1,

pp. 58–73.

Topsøe, Flemming (1979). “Information-theoretical optimization techniques”. In: Kybernetika 15.1,

pp. 8–27.

55


