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Abstract

We estimate the density and its derivatives using a local polynomial approximation to the logarithm
of an unknown density function f . The estimator is guaranteed to be nonnegative and achieves the
same optimal rate of convergence in the interior as on the boundary of the support of f . The estimator
is therefore well–suited to applications in which nonnegative density estimates are required, such as
in semiparametric maximum likelihood estimation. In addition, we show that our estimator compares
favorably with other kernel–based methods, both in terms of asymptotic performance and computational
ease. Simulation results confirm that our method can perform similarly or better in finite samples compared
to these alternative methods when they are used with optimal inputs, i.e. an Epanechnikov kernel and
optimally chosen bandwidth sequence. We provide code in several languages.
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1 Introduction

We propose a new nonparametric estimator for (the logarithm) of a density function and its derivatives
that attains the optimal rate of convergence both in the interior and at the boundary of the support. Our
density estimator is available in closed form and is guaranteed to be positive unlike several alternatives,
which is appealing in some applications and critical in others, such as in semiparametric maximum likelihood
estimation (see e.g. Klein and Spady, 1993).1 The new methodology differs from the previous literature in
that it first estimates a function’s derivatives, which, if desirable, can then be used to construct an estimate of
the function itself. Our general estimation strategy can also be applied to obtain estimates of other quantities
of economic interest, including the density in regression discontinuity design models, the (reciprocal) of the
propensity score, the inverse bid function in auction models, and any other application in which the density
appears inside a logarithm or a denominator.2

Specifically, we consider an i.i.d. sequence of random variables {x1,… ,xn} with xi distributed according
to some unknown distribution F with density f > 0 on its support [0,U), where U can be infinite. The
standard Rosenblatt–Parzen (RP) kernel density estimator is inconsistent at the boundary and is typically badly
biased in finite samples at values of x near the boundary. In contrast, our method employs a local polynomial
approximation of L(x) = log f (x) to obtain asymptotically normal estimates of L and its derivatives, away
from, at, or near the boundary.

An advantage of using a polynomial approximation to the log–density instead of the density is that the
estimated density can be guaranteed to be positive, which is not true for alternative boundary correction
methods that use boundary kernels or a local polynomial approximation of f (Cheng et al., 1997; Zhang and
Karunamuni, 1998) of F (Lejeune and Sarda, 1992; Cattaneo et al., 2019).3 Unlike Loader (1996) and Hjort
and Jones (1996), however, the computation of our estimator does not require solving a nonlinear system of
equations that involves numerical integration. In fact, the estimator of derivatives of L may be expressed as
the solution to a linear system of (weighted) local averages. Thus, our method can be characterized as a local
method of moments, similar in spirit to local likelihood density estimation (Loader, 1996; Hjort and Jones,
1996, and much subsequent work) but computationally more similar to local polynomial regression (Lejeune
and Sarda, 1992; Cheng et al., 1997; Zhang and Karunamuni, 1998; Cattaneo et al., 2019).4 We therefore
retain the computational ease of a local polynomial regression estimator while eliminating the possibility of

1Klein and Spady square their density estimates to ensure positivity.
2The object of interest here is nonparametric in nature, i.e. it does not necessarily get averaged out as it does in e.g. Lewbel and

Schennach (2007).
3An exception is Jones and Foster (1996).
4For the convenience of the reader appendix B provides an overview of the alternative approaches with which we will compare

our estimator in simulations.
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negative density estimates. The estimator of f then obtains in explicit form with estimates of the derivatives
of L as inputs.

Apart from its numerical advantages, our estimator for the density has the same first order asymptotic
properties when applied with the same bandwidth as the local likelihood estimator. When applied with
a larger bandwidth, however, our estimator achieves a smaller asymptotic mean square error. We cannot
generally compare the bias of our method with the biases of methods that use a polynomial approximation to
f , but our estimator has the same asymptotic variance as traditional methods when they are applied using an
optimal kernel and bandwidth sequence. Hence, our local polynomial approximation to L can be expected to
outperform alternative estimators for f in finite samples when our bias is smaller, e.g. when the log–density
is in fact polynomial.

In large enough samples, an asymptotically unbiased version of our estimator achieves a smaller variance
and therefore a smaller mean square error than the optimized alternatives. Importantly, our estimator realizes
this improved performance without sacrificing nonnegativity of the estimated density, as would be required to
achieve the same asymptotic distribution using alternative methods.5

Our estimator requires the choice of several input parameters, more than does RP. This can be seen as a
downside and we could have hardwired specific choices of some of the input parameters to reduce the number
of input parameters that must be chosen. We have not done so since there can be instances in which the
additional flexibility is of value.

We also note that the log–density or its derivatives may be of direct interest to the researcher, in which
case our method may be an attractive alternative to transforming estimates of f and its derivatives to obtain
the desired estimates. For instance, the generalized reflection method of Karunamuni and Alberts (2005)
and Karunamuni and Zhang (2008) requires an estimate of L′(0) which they obtain using a finite difference
approximation. Estimates of L can moreover be used as an input into other objects. One case that has already
been mentioned is semiparametric maximum likelihood estimation, of which Klein and Spady (1993) is a
classical example in which the likelihood objective can be written as a function of the log–density. But there
are other important examples. For instance, in regression discontinuity design, estimation of the density
at the discontinuity point can be of interest (see e.g. Cattaneo et al., 2019). A second example would be
the estimation of propensity scores which are of importance in the estimation of treatment effects. A final
example is that of the estimation of auction models for which a version of our estimator can be used to obtain
direct estimates of the inverse strategy function; see e.g. Hickman and Hubbard (2015); Pinkse and Schurter

5One could replace negative density estimates produced by alternative methods by zero, but that is both clunky and would not
help in cases in which the density must be positive.
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(2019). These examples and more are discussed in section 5. Finally, we provide code in several languages at
https://github.com/kschurter/logdensity.

2 Estimator

We now discuss our main estimator, postponing the discussion of applications and variants to section 5. Let
L(y) = log f (y) denote the log–density function and assume it to possess at least S + 1 ≥ 2 derivatives at
x, the point at which we wish to estimate L. Our estimator will be in the kernel family of estimators and
we denote our bandwidth by ℎ.6 To specifically allow for x approximating the boundary, we introduce the
notation z = min(x∕ℎ, 1).

In the first step of our estimation procedure, we estimate derivatives of L, which are subsequently used
to construct an estimate of L itself. Our estimator of derivatives of L is based on the fact that for any
differentiable function g ∶ ℝ → ℝS with support [−z, 1] and for which g(−z) = g(1) = 0 ∈ ℝS , we have

1
ℎ2 ∫

x+ℎ

x−zℎ
g′
(y − x

ℎ

)

f (y) dy = −1
ℎ ∫

x+ℎ

x−zℎ
g
(y − x

ℎ

)

L′(y)f (y) dy

= −1
ℎ ∫

x+ℎ

x−zℎ
g
(y − x

ℎ

)

S+1
∑

s=1

L(s)(x)(y − x)s−1

(s − 1)!
f (y) dy + o

(

ℎS
)

, (1)

where L(s) denotes the s–th derivative. The above follows from integration by parts under the assumption that
f is bounded on the domain of integration and a Taylor expansion of L′ around x. We define �s = L(s)(x)

and gather these coefficients into a vector � = [�1… �S]
⊺. We then estimate integrals on the right and left

sides of (1) by their sample analogs and estimate � by solving

1
nℎ2

n
∑

i=1
g′
(xi − x

ℎ

)

= −
S
∑

s=1
�̂s

1
nℎ

n
∑

i=1
g
(xi − x

ℎ

) (xi − x)s−1

(s − 1)!
. (2)

Since (2) is linear in �̂, the solution will generally be unique.7 Moreover, we can choose g such that our
estimator �̂ of � is in closed form.

There are many functions g that satisfy the desiderata outlined above. For the purpose of providing
6By kernel family of estimators, we mean that the estimator is based on local weighted averages, though our weighting function is

not a kernel. We adopt the standard definition of a kernel as a function k that integrates to one.
7Recall that g is an S-dimensional vector, which can be chosen to ensure that its Jacobian is invertible. Our results will show

that �̂ is unique with probability approaching one. For intuition, consider what happens if S = 1. Our discussion in this section
assumes that L is continuously differentiable at x, which implies that f (x) > 0. Write the right hand side in (2) as �̂1Σ̂n. Then by the
Hoeffding inequality, Pr(|Σ̂n − EΣ̂n| > �) goes for any fixed � > 0 to zero at an exponential rate and EΣ̂n converges by a standard
nonparametric kernel bias expansion to a nonzero limit. The case f (x) = 0 will be discussed in section 3.3.
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examples, we choose g to be a vector whose j–th element is

gj(t) = (t + z)j(1 − t)1(−z ≤ t ≤ 1).

In section 4 we describe the sense in which this choice of g may in fact be optimal.

Example 1. If S = 1 then �̂1 is simply the derivative of the logarithm of the RP estimator with kernel

61(−z ≤ t ≤ 1){z + t(1 − z) − t2}∕(1 + z)3, which simplifies to an Epanechnikov kernel if z = 1.

Example 2. If z = 1 and gj(u) = k(u)uj−1 for some symmetric, nonnegative kernel function k then (1)
represents the first–order condition for the minimizer of the least squares criterion in a local polynomial

regression of L′(xi) on xi, which would be infeasible because L′(xi) is not observed.

Example 2 illustrates that the integration by parts in (1) can be viewed as a device for obtaining a feasible
set of local moment conditions from an infeasible set of moment conditions involving L′. Thus, g fulfills a
role similar to a kernel, but the restrictions we impose are different. Indeed, we require g(−z) = g(1) = 0 so
that g(1)f (x + ℎ) − g(−z)f (x − zℎ) is zero after integration by parts.

Now, once we have an estimator �̂ of the derivatives of L at x, we can use it to construct estimators
of f (x) and L(x). Indeed, substituting our approximation for the log–density in ∫ 1

−zmz(t)f (x + tℎ) dt and
rearranging suggests an estimator for �0 similar to that of Loader (1996):

f̂ (x) =
f̂m(x)

∫

1

−z
mz(t) exp

(

S
∑

s=1

�̂stsℎs

s!

)

dt

, (3)

where f̂m is a RP estimator using a nonnegative kernel mz with support [−z, 1]. It should be apparent that
f̂ (x) cannot be negative and the numerator is zero only if there are no data on the interval [x − zℎ, x + ℎ].

If z < 1 then mz can be thought of as a traditional boundary kernel8 such that the bias in the numerator
of (3) is O(ℎ). The role of the denominator is that it is an (asymptotically) biased estimator of the number
one. Indeed, the denominator bias compensates for the numerator bias such that for S = 1, the bias of f̂ (x) is
again O(ℎ2). We define L̂(x) = log f̂ (x) and show that its asymptotic bias is �S+1ℎS+1 times a constant that
is independent of both n and fixed x.9

Computing f̂ is relatively simple because �̂ is simply a local least squares statistic and f̂ is a ratio.
Although f̂ ’s denominator contains an integral, for values of S ≤ 2, which will be the most common scenario,

8k∕ ∫max(x∕ℎ−1,0) k; see e.g. Gasser and Müller (1979).
9For the case x = zℎ, the asymptotic bias does depend on z.
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the denominator in (3) obtains in closed form ifmz is a truncated Epanechnikov; for S = 1 this is demonstrated
in example 3 below.10 For other kernels and greater values of S, an asymptotically equivalent closed form
expression can be obtained by expanding the denominator in (3) in terms of exponential Bell polynomials
(Bell, 1927).11 Standard numerical integration methods can also be applied to this integral, in which case an
advantage of our method is that this integral only needs to be computed once rather than at each iterate of a
maximization routine, as in a local maximum likelihood approach.

The following examples compare the asymptotic behavior of our estimator and traditional approaches to
kernel density estimation at and away from the boundary. Example 3 obtains a closed form expression for the
denominator in (3), which is used in examples 4 and 5 to obtain explicit expressions for the special cases
z = 1 and z = 0 (away from the boundary and at the boundary, respectively).
Example 3. Let � = �(z) = 3∕(2 + 3z − z3) = 3∕{(1 + z)2(2 − z)} and suppose that mz is a truncated

Epanechnikov, i.e. mz(t) = �(1 − t2)1(−z ≤ t ≤ 1). If S = 1 then the denominator in (3) is �1(�̂1ℎ), where

�1(t) =

⎧

⎪

⎨

⎪

⎩

1, t = 0,

�t−3
[

(2t − 2)et −
{

−2 − 2tz + t2(1 − z2)
}

e−zt
]

, t ≠ 0.

Example 4. Suppose S = 1. If x ≥ ℎ then g(t) = −(1 − t2)1(|t| ≤ 1), which is proportional to minus the

Epanechnikov kernel. So then �̂1 is simply the derivative of the logarithm of the RP estimator using the

Epanechnikov kernel. The denominator in (3) is then exactly

⎧

⎪

⎪

⎨

⎪

⎪

⎩

3

2�̂3
1ℎ3

{

exp(�̂1ℎ)(�̂1ℎ − 1) + exp(−�̂1ℎ)(�̂1ℎ + 1)
}

, �̂1 ≠ 0,

1, �̂1 = 0.

The denominator can be expanded around ℎ = 0 to obtain the approximation L̂(x) ≈ log f̂m(x) − log
(

1 +

�̂2
1ℎ

2∕10
)

. It is well–known that the bias of log f̂m(x) is ℎ2f ′′(x) ∕ 5f (x) + o(ℎ2). The bias of L̂(x) is by the

mean value theorem then seen to be ℎ2�2∕5 + o(ℎ2). Thus, the bias we introduced in the denominator offsets

the bias present in the numerator.

In example 4 we took x > ℎ and hence z = 1 to provide intuition. In the following example we consider
what happens at the boundary, i.e. if x = z = 0.

10For S = 2 and �̂1 < 0 it would however involve a normal distribution function and for �̂1 > 0 a similar integral.
11For S = 1 we get that that the exponential in the denominator in (3) can be written as 1 + �̂1tℎ+ �̂

2
1t

2ℎ2 + op(ℎ2). For S = 2 we
get 1 + �̂1tℎ + (2�̂2 + �̂

2
1)t

2ℎ2 + (3�̂1�̂2 + �̂
3
1)t

3ℎ3 + op(ℎ3).
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Example 5. Again suppose that S = 1, but now let x = z = 0. Then g(t) = −(1 − t)t, such that �̂1 is now the

derivative of the kernel density estimator at zero using the kernel 6(1 − t)t1(t ≤ 1).

If we again use an Epanechnikov in (3) then now the denominator becomes for �̂1 ≠ 0,

3
2
2 + �̂2

1ℎ
2 − exp(�̂1ℎ)(2 − 2�̂1ℎ)

�̂3
1ℎ3

= 1 +
3�̂1ℎ
8

+
�̂2
1ℎ

2

10
+ o(ℎ2).

Our results show that the bias of �̂1 is �2ℎ∕2 + o(ℎ), such that the denominator bias is 3�1ℎ∕8 + 3�2ℎ2∕16 +

�21ℎ
2∕10 + o(ℎ2). Further,

Ef̂m(0) = f (0) +
3ℎf ′(0)

8
+
f ′′(0)ℎ2

10
+ o(ℎ2),

such that the bias of f̂ (0) is now −7ℎ2�2f (x)∕80 + o(ℎ2). The bias of L̂(0) is by the delta method hence

−7ℎ2�2∕80 + o(ℎ2). Again, the bias we introduced in the denominator offsets the bias in the numerator.

Example 5 demonstrates that, unlike traditional boundary kernel estimators, the bias of our estimator is
O(ℎ2) at the boundary, also. It may seem odd that the bias in example 5 is less than that in example 4 but note
that the variance will be larger at the boundary and one would hence generally choose a greater bandwidth.

We finish this section with a description of a multivariate version of our estimator. For S = 1, one could
simply solve for �̂→

1 in

1
nℎdx+1

n
∑

i=1
)xg

→
(xi − x

ℎ

)

= −�̂→

1
1

nℎdx

n
∑

i=1
g→

(xi − x
ℎ

)

,

with dx the dimension of xi and g→(x) =
∏dx

j=1 g(j)(xj), where the g(j)’s satisfy the conditions described
above for the univariate case.12 The corresponding estimator for the density f is then

f̂ (x) =
f̂m(x)

∫

1

−z1
⋯∫

1

zdx

mz(t) exp
(

ℎt⊺�̂→

1
)

dtdx ⋯ dt1

.

The procedure for values of S > 1 is analogous to the univariate case but is substantially messier since
the number of parameters to be estimated grows as a power of dx, just like it would for local polynomial
estimation. The theoretical results below are for the univariate case, but extend to the multivariate case.

12Away from any boundaries, the g(j)’s can all be the same.
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3 Limit results

3.1 Derivatives of L

We first derive limit results for the vector �̂ of estimates of derivatives of L. Since our estimator �̂ is defined
as the inverse of a matrix times a vector, its bias is the inverse of a matrix times a vector, also.

To simplify expressions for the asymptotic bias and variance of our estimator, we introduce the following
objects which depend only on the choice of function g (which in turn depends on the proximity to the boundary
z), as well as a diagonal matrix that depends on ℎ. Let

Ωjs = Ωjs(z) =
1

(s − 1)! ∫

1

−z
−gj(t)ts−1 dt =

s−1
∑

t=0

(−1)s−t+1(s − t)j!
(j + s + 1 − t)!t!

(1 + z)j+s+1−t, j, s = 1, 2,… , (4)

and let Ω, b,Λ be defined as

Ω =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ω11 Ω12 ⋯ Ω1S

Ω21 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ΩS−1,S

ΩS1 ⋯ ΩS,S−1 ΩSS

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, b = Ω−1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ω1,S+1

Ω2,S+1

⋮

ΩS,S+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Λ =

⎡

⎢

⎢

⎢

⎢

⎣

1

⋱

ℎS−1

⎤

⎥

⎥

⎥

⎥

⎦

.

Let further V ∈ ℝS×S have (j, s) element equal to

∫

1

−z
g′j(t)g

′
s(t) dt =

2js(1 + z)j+s+1

(j + s + 1)(j + s)(j + s − 1)
.

We are now in a position to state our first theorem.

Theorem 1. Assume L is S + 1 times continuously differentiable (and hence f nonzero) in a neighborhood

of x. Let ℎ→ 0 and nℎ3 → ∞ as n → ∞. For a vector �̃ defined in appendix A.1,

Λ(�̃ − �) = ℎS�S+1b + op(ℎS),
√

nℎ3Λ(�̂ − �̃)
d
→ N

(

0, (Ω⊺V −1Ω)−1
/

f (x)
)

.

The “in a neighborhood” condition comes from the fact that we specifically allow x = zℎ. Although
x is allowed to vary with ℎ and hence with n, our result is not really uniform since, like with other local
nonparametric estimators, tightness obtains only in an ℎ–neighborhood, i.e. a neighborhood that shrinks with
the sample size. The rates in theorem 1 are the standard rates for local nonparametric derivative estimation.13

13With the RP estimator the
√

nℎ3 rate comes from the fact that the variance of ℎ−2k′{(x − xi)∕ℎ} is O(ℎ−3) since squaring
produces ℎ−4 and then one ℎ is recovered by substitution.
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Example 6. ForS = 1 the bias and variance expressions of �̂1 simplify to �2ℎ(1−z)∕2 and 12∕{f (x)(1+z)3},

respectively. The interior case (z = 1) is more favorable than the boundary case (z = 0), as expected.

Example 7. For S = 2 the bias and variance expressions for �̂1 are −�3ℎ2(1 − 3z+ z2)∕10 and 48(4 − 7z+

4z2)∕{f (x)(1 + z)5}, which is again more favorable in the interior than at the boundary.

3.2 Density

We now continue with the results for f̂ (x).
Let cmsz = ∫ 1

−zmz(t)t
s dt ∕ s! and let cmz be a vector with elements cm1z,… , cmSz. Let further !z(t) =

mz(t) − c
⊺
mzΩ

−1g′(t), and define V = f (x) ∫ 1
−z !

2
z(t) dt and ℬ = f (x)�S+1Ξf ∫

1
−z !z(t)t

S+1 dt ∕ (S + 1)! =

f (x)�S+1Ξf
(

cm,S+1,z− c
⊺
mzb

)

, for Ξf a constant defined in the statement of theorem 2. Because mz integrates
to one and ∫ 1

−z g
′(t) dt = 0 and ∫ 1

−zΩ
−1g′(t)ts dt ∕ s! = Ω−1Ω⋅s is the s–th standard basis vector in ℝS , the

function !z is a kernel of order S + 1 or higher. To be clear, !z is not used to compute the density estimate;
rather, it is a convenient object that arises in the asymptotic theory.

Theorem 2. Assume L is S + 1 times continuously differentiable in a neighborhood of x, that f (x) > 0, and

that 0 < Ξ2
f = limn→∞ nℎ2S+3 <∞. Then

√

nℎ{f̂ (x) − f (x)}
d
→ N(ℬ,V ).

The asymptotic bias of our estimator is zero in some instances. For example, if S = 2 and z = 1 then the
asymptotic bias is zero whenever m is a symmetric kernel function; this is natural since this is effectively
equivalent to choosing a higher order kernel !z, albeit that unlike higher order kernel density estimates, our
estimates cannot be negative.

The following two examples derive the !z functions for the case in which both mz is a uniform and x is at
the boundary and the case in which mz is a truncated Epanechnikov and x is anywhere.

Example 8. Suppose that mz is a uniform and x = z = 0. If S = 1 then !0(t) = (4 − 6t)1(0 ≤ t ≤ 1)

and !1(t) = 1(|t| ≤ 1)∕2. If instead S = 2 then !0(t) = (9 − 36t + 30t2)1(0 ≤ t ≤ 1) and !1(t) =

3(3 − 5t2)1(|t| ≤ 1)∕8.

Example 9. If mz is a truncated Epanechnikov and S = 1 then mz(t) = �(1 − t2)1(−z ≤ t ≤ 1) with

� = 3∕{(1 + z)2(2 − z)}, such that cm1z = �(1 − z2)2∕4 = 3(1 − z)2∕{4(2 − z)}, cm2z = (2 − 4z + 6z2 −

3z3)∕{10(2 − z)}, and b = (1 − z)∕2, which produces

ℬ = �2Ξf (x)
3z3 + 29z − 7 − 21z2

40(2 − z)
,
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where the ratio equals 1∕10 for z = 1 and −7∕80 for z = 0. To get Vf note that !z(t) = �{2(1 + z)(1 − t2) −

6(1 − z)2t + 3(1 − z)3} ∕ {2(1 + z)}, which produces

V = f (x)
108 − 180(1 + z) + 120(1 + z)2 − 36(1 + z)3 + 4.05(1 + z)4

(1 + z)3(2 − z)2
,

which equals 0.6f (x) for z = 1 and 4.01f (x) for z = 0.

As the above two examples demonstrate, deriving the asymptotic bias and variance for generic z can be a
messy but straightforward exercise.

3.3 Limit results when f (x) = 0

Because the nonnegativity of the proposed density estimator is one of its advantages over some alternative
approaches (boundary kernels and local polynomial approximations to the density function), we further
investigate the asymptotic behavior of our estimator in cases where one would expect these alternatives
to struggle, i.e. when the density is zero. Indeed, nonnegativity would not be an advantage of the density
estimator if it performed poorly in other ways whenever the density was close to zero. Fortunately, the bias of
the density estimator converges at the usual rate when f (x) = 0 for fixed x > 0, and the variance converges
even faster. Moreover, f̂ (x)�̂1 converges to f ′(x) faster when f (x) = 0 than when f (x) > 0 if x > 0 despite
the fact that the log–density and its derivatives are not defined when the density is zero. We further suggest a
modification to �̂ that increases the rate at which �̂1 diverges when f (0) = 0 and thereby reduces the order of
the bias in the density at the boundary. If f (0) = 0 then the modified density estimator at the boundary is
superconsistent.

Throughout this analysis, we maintain the standard smoothness assumption that f has two continuous
derivatives and the assumption that f takes support on an interval [0,U). For fixed x > 0, these assumptions
imply that f (x) is a relative minimum of the density, i.e. f (x) = 0 implies f ′(x) = 0 ≤ f ′′(x). At the
boundary, however, we admit the possibility that f ′(0) > 0. Because the dominant terms in the asymptotic
expansions depend on whether either or both f ′(x) and Ω12 are zero, we provide separate results to deal with
these cases. The next theorem applies to the interior case where f (x) = f ′(x) = 0 and Ω12 = 0, which will
be true if, for example, g is an even function. For simplicity, we specialize the theorems to the local–linear
version of the estimator (S = 1).

Theorem 3. Let S = 1. Assume f is twice continuously differentiable at a fixed x > 0, f (x) = 0,

10



0 < Ξ2
f = limn→∞ nℎ5 <∞, Ω12 = 0, and Ω13 ≠ 0. Then

n2∕5{f̂ (x) − f (x)}
p
→ f ′′(x) Ξf cm12 and n1∕5{f̂ (x)�̂1 − f ′(x)}

p
→ 0.

Roughly speaking, the numerator in the definition of f̂ converges in probability because the dominant
term in the variance expansion is of smaller order when f (x) = 0. The denominator of f̂ converges in
probability to one because ℎ�̂1 is op(1). Hence, the density estimator is asymptotically equivalent to an RP
estimator when f (x) = f ′(x) = 0 and Ω12 = 0.

The fact that f̂ (x) in theorem 3 has asymptotic variance equal to zero suggests choosing a smaller band-
width. Indeed, it can be shown that the optimal bandwidth is then of order n−1∕3 producing the convergence
rate n−2∕3 and a nonnormal limit distribution.14 One cannot, however, make the bandwidth dependent on
the value of f (x) itself since f (x) is exactly what we wish to estimate. Further, a two step appproach, i.e.
replacing f̂ (x) with zero if f̂ (x) is below some cutoff, would converge even faster if f (x) = 0, but would
produce discontinuous estimates and erratic behavior near the cutoff.15

The fact that the derivative estimator is superconsistent may be surprising at first glance, but it is a property
that is shared by the RP derivative estimator. To see this, note that if f (x) = 0 for x in the interior then
Ef̂ ′

RP(x) = o(ℎ2) and nV f̂ ′
RP(x) = o(ℎ−3), where both results follow by bias–like expansions for nonparametric

kernel density estimators, noting that twice continuous differentiability at x in the interior and f (x) = 0 imply
that f ′(x) = 0. The convergence rate of both our estimator of f ′ and the RP derivative estimator is op(n−1∕5),
but nothing more can be said.16

We now turn to the boundary estimation problem, where we focus on the case x = 0 noting that these
results easily extend to x = zℎ for fixed 0 ≤ z ≤ 1, as explained in the proof. The following theorem applies
to the case where Ω12 or f ′(0) is nonzero.

Theorem 4. Let S = 1. Assume f is twice continuously differentiable at zero, f (0) = 0, and ℎ = O(n−1∕5).

Let �̂∗
1 = �̂1max{1, ℎqA�̂1} for some constants A > 0 and 0 < q < 1 and let f̂ ∗ denote the density estimator

with �̂1 replaced by �̂∗
1. If f ′(0) > 0 or Ω12 ≠ 0, then n2∕5{f̂ ∗

(0) − f (0)}
p
→ 0.

Intuitively, the key idea is that it will become apparent that the density is zero because �̂1 diverges at the
rate of 1∕ℎ if Ω12 ≠ 0 or 1∕ℎ2 if f ′(0) > 0 and Ω12 = 0. Whenever �̂1 is large, �̂∗

1 gets an extra shove toward
infinity so that ℎ�̂∗

1 diverges under the assumptions of theorem 4 but �̂∗
1 converges to the same limit as in

14Both properties also apply to the RP estimator. Note that 0 ≤ f̂ (x) = f̂ (x) − f (x).
15And the estimates certainly would not be uniform in f .
16For RP, twice continuous differentiability implies that Ef̂ ′

RP(x) ≃ f ′(x) + ℎf ′′(x) ∫ k(t)t dt = o(ℎ) if k is an even kernel.
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theorem 1 if f (0) > 0. Because ℎ�̂∗
1 appears in the exponent in the denominator of (3), f̂ ∗ converges to zero

very quickly when f (0) = 0.
We note that the unmodified estimator f̂ (0) works well whenever Ω12 = 0 because ℎ�̂1 then diverges at

the rate of 1∕ℎ. Moreover, practitioners have control over Ω12 through the choice of g, so replacing �̂1 with �̂∗

is unnecessary in theorem 4 for suitable choices of g. On the other hand, practitioners may not want to allow
the possibility that the density is zero at the boundary to drive this choice. Thus, substituting �̂∗

1 provides
flexibility to consider other criteria in selecting g while maintaining superconsistency when f (0) = 0.

For the purposes of estimating f ′ near the boundary when Ω12 is nonzero, we note that the left side
of (2) equals −Ω11f ′(x) − ℎΩ12f ′′(x) + op(1∕

√

nℎ2). Dividing the left side by −Ω11 yields a standard RP
estimator for f ′(0) that converges at the optimal rate whenever �̂1 diverges. One can therefore use a similar
idea as in theorem 4 to define a piecewise estimator for f ′(zℎ) that equals f̂ �̂1 if ℎq�̂1 < A and equals the
RP estimator, otherwise.

4 Asymptotic comparisons

In this section, we explore the optimal (g, mz) in the local linear case S = 1 and compare our optimized
estimator with existing methods. We show that the above choice of g and mz achieves the same asymptotic
variance as an optimal RP estimator in the interior (z = 1), although their respective biases cannot be
compared in general, in the sense that which bias is less depends on the density function and its second
derivative at the point of estimation. We then consider the optimal choice of g and mz at the boundary
(z = 0), where we show that the truncated Epanechnikov mz paired with g(t) = (t + z)(t − 1)2 attains the
same variance as an optimal boundary kernel (Zhang and Karunamuni, 1998), though the biases are again
incomparable because our estimator’s bias is proportional to f (x)L′′(x) rather than f ′′(x) as in the case of
RP estimators. We are, however, able to derive the relative asymptotic mean squared error (AMSE) of our
estimation method compared with a local–likelihood based estimator. We show that our method with the
cubic choice g(t) = (t+ z)(1 − t)2 attains the same AMSE in the interior and is more efficient at the boundary
than the estimator in Loader (1996) with an Epanechnikov kernel.

4.1 Optimal choice of g and mz in the local linear case

In traditional RP kernel estimation, one typically derives the AMSE–optimal kernel in conjunction with the
optimal choice of bandwidth sequence. When the bandwidth sequence is optimally scaled by a multiplicative
factor that depends on the roughness and second moment of the kernel, one can show that the Epanechnikov
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kernel minimizes the AMSE of the estimator for the density among all nonnegative second–order kernels.17

The nonnegativity restriction ensures that the estimated density is nonnegative and continuous at the point
of evaluation. In this section, we similarly explore the optimal choice of inputs to our estimator under an
analogous set of restrictions on g and mz that guarantee that our density estimate f̂ (x) is nonnegative.

In addition, we impose the constraint that g does not change sign, i.e. is either nonnegative or nonpositive
on [−z, 1]. This restriction helps to keep the right side of (2) away from zero whenever the density is nonzero.
Although this restriction is not necessary for the asymptotic analysis in section 3 because the probability limit
of the right side is (strictly) positive, the estimator may perform poorly when ∫ 1

−z g(t)f (x + tℎ) dt is close to
zero in finite samples and f (x) > 0.

This restriction is necessary in order to derive an interior solution to the input selection problem. Without
the sign–change constraint, the optimal choice of g and mz would yield an asymptotically unbiased estimator,
which in turn implies that there is no optimal bandwidth sequence of order n−1∕5. For example, if mz(t) =
3(1− t2)(1+ t) and g(t) = (t+z)(1− t)az(t), where az(t) is a carefully selected quadratic polynomial in t, then
!z(t) will be a third–order kernel for z ∈ [0, 1) and a fourth–order kernel for z = 1. One could then choose a
bandwidth sequence proportional to n−1∕5 that is large enough to make the asymptotic variance as small as
desired. This approach would be analogous to using a higher–order kernel with a bandwidth of order n−1∕5
in RP estimation, though the resultant !z is in fact less rough than the usual optimal fourth–order kernel
because we do not require !z(1) = !1(−1) = 0. This asymptotically unbiased estimator can be desirable in
some circumstances, but one must be cognizant of the potential risks of using a relatively large bandwidth
and a g for which the right side of (2) can be zero in finite samples.

To summarize, we seek to minimize the AMSE subject to the following constraints:

∫ 1
−z g(t) dt = 1, g(−z) = g(1) = 0, g ≥ 0

∫ 1
−zmz(t) dt = 1, mz(1) = m1(−1) = 0, and mz ≥ 0.

Note that the constraints that g is nonnegative and integrates to one are without loss of generality because the
estimator is invariant under scalar multiplication of g and we have already assumed g does not change sign.

The AMSE of the density estimator depends on g and mz only through the function !z. Provided that the
bias is of order n−2∕5, the optimal bandwidth at a fixed x isℎ = ∫ 1

−z !z(t)
2dt

/ {

∫ 1
−z(!z(t)t

2dt)2f (x)L′′(x)2n1∕5
}

for z ∈ {0, 1} corresponding to x = 0 or x > 0. The AMSE then factors into
(

∫

1

−z
!z(t)t2 dt

)2(

∫

1

−z
!2
z(t) dt

)4(5
4
f 6∕5(x)L′′(x)2∕5n−4∕5

)

, (5)
17Specifically, the optimal bandwidth is proportional to [∫ k(t)2 dt]1∕5[∫ k(t)t2 dt]−2∕5, where k is a nonnegative, symmetric kernel.
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which is similar to the corresponding expression for RP estimators, except that the bias depends on L′′(x)

instead of f ′′(x). A standard argument using the calculus of variations shows that the Euler equation for
optimality implies that !z is a quadratic polynomial. Unlike typical derivations of the optimal kernel for RP
estimation, however, we do not directly require !z(1) = 0, !1(−1) = 0, or !1 ≥ 0. Our problem is slightly
more complicated because we must determine the optimal quadratic !z that can be obtained from a pair
(g, mz) that satisfy the above constraints.

To this end, we note that the above constraints on (g, mz) imply that !z(1) ≤ 0 and !1(−1) ≥ 0. In the
interior, the nonnegativity of !1(−1) is binding. Hence, we find that the optimal !1 is the Epanechnikov
kernel, which can be obtained by selected the Epanechnikov kernel for m1. Because cm11 is zero, the choice
of g does not affect the asymptotic distribution given m1. One can therefore choose g according to another
objective. For instance, g(t) = 1 − t2 minimizes the AMSE of the estimator for �1.

On the other hand, at the boundary (z = 0) the constraint!0(1) ≤ 0 is binding. We find that the optimal!0

is given by!0(t) = 6−18t+12t2, which is the same optimal boundary kernel found in Zhang and Karunamuni
(1998). One can produce this !0 using a truncated Epanechnikov kernel for m0 and g(t) = t(t − 1)2. Because
this g differs from the optimal g for estimating f and f ′ at z = 1, we suggest g(t) = (t + z)(t − 1)(1 + zt − t)

combined with the Epanechnikov mz because it is AMSE–optimal for f and f ′ in the interior and AMSE–
optimal for f at the boundary.

If one attempts to derive optimal inputs for estimating the density local to the boundary, i.e. at a drifting
sequence x = zℎ for z ∈ (0, 1), complications arise quickly. For example at z = 1∕3, the constraints on
(g, mz) do not bind and an asymptotically unbiased estimator of the density is feasible using mz proportional
to (1 − t2)(1 + t) and g(t) = (t + z)(1 − t)(2t2 − t − 7). The preceding analysis immediately goes awry
because there is no optimal bandwidth of order n−1∕5 for z = 1∕3 given these inputs. At other values of
z ∈ (0, 1) for which the constraints do bind, the issue is that the above bandwidth sequence is generally
suboptimal because !z depends on ℎ through z, with the result that the first–order condition for optimality of
the bandwidth sequence is insufficient for the global minimum. In light of these issues, we conclude that
there is no continuous transformation that one can apply to the bandwidth sequences at z = 0 and z = 1 in
order to optimally estimate the density at intermediate values of z. Therefore, one must necessarily choose a
somewhat ad hoc bandwidth local to the boundary.

One such rule for specifying the bandwidth near the boundary is to linearly vary the bandwidth between
the interior and the boundary: ℎ = ℎ0(1−min{x∕ℎ1, 1})+ℎ1min{x∕ℎ1, 1}, where ℎ0 and ℎ1 are the optimal
bandwidths at z = 0 and z = 1. When g and mz are also chosen optimally for estimating the density at
z = 1 and z = 0, ℎ0 = 2ℎ1 and this rule implies that the same window is used to estimate the density and its
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derivatives for all x < ℎ1.

4.2 Relative AMSE

The AMSE of the local–likelihood estimator for f (x) in Loader (1996) can be written in a form similar
to (5). The relative AMSE of our proposed estimator and the local likelihood estimator using an optimal
kernel is then given by the ratio of the multiplicative constants that scale f (x)6∕5L′′(x)2∕5n4∕5. At z = 1,
if one compares our optimal estimator to the local–likelihood based estimator using an optimal bandwidth
sequence and the Epanechnikov kernel, the relative AMSE of our estimators is one. In fact, the limiting
distributions are identical. At z = 0, the optimal kernel to use with the local likelihood estimator is triangular,
i.e. k(t) = (1 − |t|)1{|t| ≥ 1}, which yields the same asymptotic bias and variance as our estimator using the
truncated Epanechnikov and g(t) = (t + z)(1 − t)2.

We should expect our estimator with g(t) = (t + z)(1 − t)2 and the local–likelihood estimator to perform
similarly in finite samples. Thus, our density estimator’s computational ease is its more salient advantage over
the local–likelihood based approach, given these inputs. Of course, one could make an alternative choice of g
and increase the bandwidth to widen the gap in AMSE at the possible expense of a larger finite sample bias.

4.3 Optimal inputs with polynomial approximations of higher order

For S > 1, the optimal (g, mz) can again be reformulated as the optimal choice of a higher order kernel !z.
Unlike in RP estimation, however, the higher order kernel does not necessarily entail the possibility of negative
density estimates, since one can achieve a higher order kernel !z using a nonnegative mz and a suitable
g. For example, mz(t) = 3(1 − t2)∕4 and gj(t) = (t + z)j+1(t − 1) for j = 1, 2, 3 produces a fourth–order
Epanechnikov kernel !1(t) =

15
32 (3 − 7t2)(1 − t2). Like in the linear case, the restrictions !z(1) = !1(−1) = 0

are necessary for the fourth–order Epanechnikov kernel to be AMSE–optimal. Without these or similar
constraints on g, one can choose the non-bandwidth inputs to achieve zero asymptotic bias, i.e. make the
squared bias asymptotically negligible relative to the variance. We must therefore restrict g to ensure an
interior solution when we optimize the AMSE over (g, mz) in the higher order cases, as well.

In general, one also needs to restrict g to derive an AMSE–optimal choice for the estimation of the
derivatives of L, as well. The necessary conditions for the calculus of variations problem imply that each
optimal gj is a a polynomial of at most degree S + 2 for each j. Because the scale of g does not affect
the estimates and gj(−z) = gj(1) = 0, one only needs to optimize over the remaining roots of gj for each
j = 1,… , S. Characterizing the resulting minimization problem is routine, but it does not generally lead to
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an interior solution for the choice of bandwidth because the bias can be zero. For example, the bias can be
made zero when S = 2 if ∫ gjt2 dt = 0 for all j.

5 Applications

5.1 Treatment effects

It is well–known (see e.g. Hirano et al., 2003) that under an unconfoundedness assumption the average
treatment effect can be expressed as

E
( yt
p(x)

−
y(1 − t)
1 − p(x)

)

,

where p is the propensity score, y the outcome variable, x a vector of regressors, and t a binary treatment
variable. Let p1 = Et be the unconditional treatment probability. Let further f1 denote the regressor
density function conditional on treatment and f0 the density conditional on nontreatment. Then f (x) =
f1(x)p1 + f0(x)(1 − p1), which produces

1
p(x)

= 1 +
f0(x)
f1(x)

1 − p1
p1

, 1
1 − p(x)

= 1 +
f1(x)
f0(x)

p1
1 − p1

,

such that the reciprocals of the propensity scores only depend on the ratios of the densities and the unconditional
choice probabilities. In practice, p(x) is often estimated using a logistic functional form and possibly a series
expansion in x,18 which implies the logarithm of the odds ratio is a polynomial in x. Our log–polynomial
approximation to f1 and f0 similarly imply the odds ratio is log–polynomial. The data x will not typically be
scalar–valued, so one could for instance use a linear index of regressors instead of the regressors themselves;
see section 5.3 for an example of how one might estimate p(x) = p∗(x⊺�0). In any case, our approach is a
natural local extension to the logit series estimator for p(x).

5.2 Auctions

In first–price, sealed–bid procurement models with independent private values, it is well–known (see e.g.
Guerre et al., 2000) that the inverse bid function is of the form b − F̄ (b)∕f (b), where F̄ , f are the survivor
and density functions of the minimum rival bid. Since the support of the bid distribution is assumed to have a
lower bound in this literature (costs cannot be less than zero and hence neither are bids), boundary issues are
a serious concern.

18This casual observation is supported by the fact that the built–in propensity score matching estimator in Stata defaults to the
logit model.
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So let Ψ(y) = F̄ (y)∕f (y) be the object of estimation. One way of estimating Ψ is to estimate F̄ , f
separately where f is estimated using the machinery in the main part of this paper and F̄ is estimated by
the empirical survivor function. This estimator has all the features of the estimator discussed earlier in the
paper, positivity and boundary correction, both of which are desirable in the empirical auction setting. In
particular, if the underlying cost distribution is approximately an exponential then so is the bid distribution
and our estimator could be expected to work especially well.

The above approach is not specific to auction models. Indeed, consider the hazard function H(x) =

f (x)∕F̄ (x). H can also be estimated using the machinery developed in our paper.

5.3 Semiparametric maximum likelihood

There are many examples of semiparametric maximum likelihood estimators. Here, we only consider a
classical one, namely the Klein and Spady (1993) estimator of the coefficients in a semiparametric binary
response model, which maximizes

n
∑

i=1

[

yi log p̂(x
⊺
i �) + (1 − yi) log{1 − p̂(x⊺

i �)}
]

, (6)

where p̂ is an estimator of the choice probability. Klein and Spady apply techniques to ensure that the
estimates p̂ are positive and less than one, including trimming and adding a sample–size–dependent constant.
Our method can be helpful since p(t) = Pr(y1 = 1 | x⊺

1� = t) = f1(t)p1∕f (t), where fj is the density
of the linear index for observations with yi = j and p1 is the unconditional choice probability. Since
f (t) = p1f1(t) + (1 − p0)f0(t), the infeasible contribution to the loglikelihood could be written as

yi log
f1(x

⊺
i �)

f0(x
⊺
i �)

− log
(

p1
f1(x

⊺
i �)

f0(x
⊺
i �)

+ (1 − p1)
)

+ constant,

such that it is only the ratio of f1∕f0 that matters.

yi log f1(x
⊺
i �) + (1 − yi) log f0(x

⊺
i �) − log f (x⊺

i �) + constant,

such that only the log of the conditional and unconditional densities matters. Obtaining conditions under
which our estimator obtains the semiparametric efficiency bound, like the Klein and Spady estimator does, are
well beyond the scope of this paper. In section 6, we provide simulation evidence that suggests our estimates
of the log–densities are suitable substitutes for RP estimates in this application. Moreover, we show that an
alternative method based on the infeasible score can outperform the Klein and Spady estimator.
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5.4 Regression discontinuity design

One context in which the behavior of estimates near or at the boundary is of special importance is that of
regression discontinuity design. For instance, Cattaneo et al. (2019) provide a test of continuity of the density
function at the boundary using a boundary density estimator that is similar to the estimator in Lejeune and
Sarda (1992) in that it is based on a quadratic expansion of the distribution function. Compared to that
approach, our method requires the density to be nonzero at the boundary, which is a requirement for the
regression discontinuity framework in any case. The bottom line is that our method will work better if the
log density is approximately a low order polynomial near the boundary and theirs if the density itself is
approximately a low order polynomial. This is borne out by our simulation results.

5.5 Other boundary–correction methods

The boundary correction method of Karunamuni and Zhang (2008) requires a well–behaved estimate of L′(0),
which is exactly what our method provides.

6 Simulations

6.1 The density and its derivative

The following simulation exercise compares the performance of our estimator for the density and its derivatives
near the boundary with alternatives that also employ local polynomial approximations (Lejeune and Sarda,
1992; Cattaneo et al., 2019; Loader, 1996) and the generalized reflection method, which also estimates
the derivative of the log–density near the boundary to remove the boundary effects of the RP estimator
(Karunamuni and Alberts, 2005; Karunamuni and Zhang, 2008). For the local polynomial estimators, we use
a local linear approximation to the density or log–density, depending on the method.19

We simulate 2,000 i.i.d. samples of size n = 500 and estimate f at points within one bandwidth of the
boundary in order to compare the estimators away from, near, and at the boundary. Since the bandwidths
differ across methods, so does the range of values at which the density is estimated in the presented results.
The random variables are drawn from each of four distributions whose densities exhibit varying behaviors
near their left boundary x = 0. The first is a beta distribution with density f1(x) = �(1 − x)�−1, which is in
fact polynomial in x for integer values of �, which one would expect to favor LS–CJM, although that is not
reflected in our simulations if � > 3. The second design is a normal distribution with mean �∕2 and variance

19This corresponds to a local–quadratic polynomial approximation to the distribution function in Lejeune and Sarda (1992) and
Cattaneo et al. (2019).
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one, left–truncated at zero. This density is log–quadratic, which could favor our method and Loader’s. The
third and fourth designs are f3(x) = (e−x + �xe−x)∕(1 + �) and f4(x) = (e−x + �x2e−x)∕(1 + 2�).

For each simulation design, we use our local–linear estimator to estimate f and its derivative using
g(t) = (t + z)(t − 1)(1 + zt − t) (PS),20 Loader’s local likelihood estimator (Loader), a local polynomial
regression of the empirical CDF (LS–CJM), and a generalized reflection estimator (KZ).21 Wherever a kernel
is required, we use the Epanechnikov kernel k(u) = 3(1 − u2)∕4 or a truncated version thereof. This choice is
not optimal at the boundary for Loader’s estimator, but the efficiency loss is small.22 For our method and
Loader’s, we obtain an estimate of f ′ by multiplying the estimate of f by the estimate of L′. We do not
estimate f ′(x) using the generalized reflection method (KZ) for x > 0 because Karunamuni and Zhang (2008)
do not discuss estimation of the derivatives anywhere except at the boundary.

Where possible, we use the asymptotically optimal bandwidth sequences for z = 1 and z = 0. For
intermediate values of z, we linearly interpolate the bandwidth.23 For the generalized reflection method,
which requires separate bandwidths and finite–difference approximation to estimate L′ in a first step, we do
not develop a theory of the asymptotically optimal inputs. Instead, we select a finite–differencing scheme
and choose a combination of auxiliary bandwidths so that the pilot estimate of L′ at the boundary and the
density estimate at z = 1 have the same asymptotic variances as our method using g(t) = (t + z)(1 − t).
Specifically, we use a main bandwidth equal to the asymptotically optimal bandwidth for our method at z = 1,
and we estimate L′(0) using {log f̂ nℎL′ (2ℎL′) − log f̂ nℎL′ (0)} ∕ (2ℎL′), where f̂ nℎL′ (2ℎL′) and f̂ nℎL′ (0) are
respectively a kernel and a boundary–kernel estimator for the density whose variance is proportional to
1∕nℎL′ .

Comparing the square root of the mean square error (RMSE) of the density estimates at zero in table 1
and the RMSE for the derivative in table 2, there is no clear ranking of the estimators. Figure 1 depicts the
bias and RMSE of the local linear estimators for � = 4. The linear approximation of f (LS–CJM) performs
well for the beta distribution, but has difficulty estimating the truncated normal density and the estimate is
often negative.24 KZ is generally neither the best nor the worst of the estimators we consider here, but we

20The choice of g used here is a simple formula that interpolates the optimal choice at the boundary and away from the boundary.
21The difference between the estimated coefficients in Cattaneo et al. (2019) and Lejeune and Sarda (1992) is Op(1∕n). We only

provide simulation results for CJM’s local polynomial regression of the empirical distribution function on xi, but we note that Lejeune
and Sarda’s local polynomial approximation to the empirical distribution is very similar.

22The relative efficiency of Loader’s estimator using the triangular and Epanechnikov kernels at the boundary is about 1.008,
meaning the Epanechnikov kernel requires a sample size 1.008 times larger to achieve the same MSE as the triangular kernel. We
therefore expect the Epanechnikov kernel with n = 504 to have the same MSE as the triangular kernel with n = 500.

23Specifically, we use ℎ = ℎ0
(

1−min
{

x∕ℎ1, 1
})

+ℎ1 min
{

x∕ℎ1, 1
}, where ℎ0 and ℎ1 are the asymptotically optimal bandwidths

at z = 0 and z = 1 and x is the point of evaluation. This bandwidth selection rule implies that the same window is used to estimate
the density and its derivatives at all points within ℎ1 of the boundary, i.e. x + ℎ = 2ℎ1 for all x < ℎ1.24The LS–CJM estimator for f (0) was negative in 0%, 15%, <0.001%, and 1.2% of the samples from the four respective designs.
If we replace negative estimates of f2(0) with zero, the bias is reduced, but the RMSE of 0.036 is still large relative to the other
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acknowledge that we have not optimized the inputs into the KZ estimator as thoroughly as the other estimator’s
inputs. We also note that KZ provides a familiar benchmark away from the boundary because it is simply the
RP density estimator using an Epanechnikov kernel for z = 1.

Table 1: RMSE of the estimators for the density at the boundary (� = 4).
Estimator f1 f2 f3 f4
LS–CJM 0.067 0.041 0.082 0.051

PS 0.066 0.023 0.069 0.041
KZ 0.077 0.025 0.076 0.043

Loader 0.065 0.021 0.065 0.039

Table 2: RMSE of the estimators for the derivative of the density at the boundary (� = 4).
Estimator f1 f2 f3 f4
LS–CJM 0.145 0.113 0.397 0.243

PS 0.174 0.028 0.442 0.197
KZ 0.104 0.157 1.287 0.497

Loader 0.174 0.029 0.408 0.180

As expected, PS and Loader perform similarly for all z in each design. All four estimators have the same
asymptotic variance away from the boundary, but the differences in the bias due to differences in L′′ and
f ′′ cause the relatively minor differences in the AMSE. Local to the boundary, however, we observe more
significant differences between the estimators. In three of the four designs, the polynomial approximation to
the density function has a greater AMSE than the log–polynomial approximation methods (PS and Loader),
and the gap tends to widen at the boundary. The generalized reflection method is relatively well behaved
except in the first design in which the bias of the density estimate is very large and negative at the boundary,
despite the fact that f ′

1(0) is well estimated.
In figure 2 we plot the bias and RMSE for the derivative of f . In three of the four simulation designs,

PS has a smaller RMSE than Loader in the interior region, which we expected because g(t) = (t + z)(t − 1)

minimizes the AMSE in L′ using the given bandwidth sequence.
The following figures show the estimated log–density and its first derivative. Because the density estimated

using a polynomial approximation to F may be negative, the logarithm of the LS–CJM estimator is often a
large negative number and may be undefined. The sampling distributions of the estimators for the log–density
estimators. Intuitively, the normal asymptotic approximation to the sampling distribution does not accurately capture the bias–variance
tradeoff of this censored estimator; hence, it performs suboptimally in finite samples. The MSE could be reduced by re–estimating
with a larger bandwidth.
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Figure 1: The bias and RMSE for estimators of f1, f2, f3, and f4 (arranged from left to right) for � = 4.
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Figure 2: The bias and RMSE for estimators of f ′
1, f ′

2, f ′
3, and f ′

4 (arranged from left to right) for � = 4.
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and its derivative may be highly skewed as a result, and the bias and RMSE of the density estimate are less
informative measures, especially when compared with the other estimators. In order to make reasonable
visual comparisons, we plot the median error and median absolute error (MAE) instead of the bias and RMSE.
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Figure 3: The median error and MAE for estimators of L1, L2, L3, and L4 (arranged from left to right) for
� = 4.

6.2 Semiparametric maximum likelihood

We now compare our approach with traditional RP estimation when the density is used in the semiparametric
estimation of a binary choice model. Let y∗i = x⊺

i �0 + �i, where �i is a random disturbance independent of xi.
The data consists of an independent sample of observations (xi, yi) for i = 1,… , n, where yi = 1(y∗i > 0).
Let p(x⊺�) = E(yi | xi = x). Klein and Spady (1993) show that the quasi-maximum likelihood estimator
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Figure 4: The median error and MAE for estimators of L′
1, L′

2, L′
3, and L′

4 (arranged from left to right) for
� = 4.
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obtained by substituting a kernel–based estimator for p(x⊺
i �) in (6) achieves the semiparametric efficiency

bound under some smoothness assumptions. In order to adequately control the stochastic order of the bias
and variance in the nonparametric estimates of p(x⊺

i �), Klein and Spady suggest using either a fourth–order
kernel with a fixed bandwidth or a second–order kernel with a locally adaptive bandwidth. If one uses a
fourth–order kernel, p̂(x⊺

i �) can be negative. As a result, they recommend replacing p̂(x�i ) and 1 − p̂(x⊺
i �)

with p̂2(x⊺
i �) and {1 − p̂(x⊺

i �)}
2 in the loglikelihood and then dividing by two. We use the semiparametric

estimator based on a fourth–order kernel with a fixed bandwidth to compare with our approach.25

Using our approach, one can estimate log p(x⊺
i �) with log ȳ+log f̂1(x⊺

i �)−log f̂ (x
⊺
i �), where ȳ =

∑

yi∕n,
f̂1 is an estimate of the density of x⊺

i � conditional on yi = 1, and f̂ is the estimated unconditional density.
For example, we estimate the derivatives of the log–density at x⊺

i � using

1
nℎ2

∑

j≠i
g′
(

(xj − xi)
⊺�

ℎ

)

= −
S
∑

s=1
�̂s

1
nℎ

∑

j≠i
g

(

(xj − xi)
⊺�

ℎ

)

[(xj − xi)
⊺�]s−1

(s − 1)!
.

The density at x⊺
i � is then estimated by

1
nℎ

∑

j≠i
mz

( (xj − xi)
⊺�

ℎ

)

∫

1

−z
mz(t) exp

( S
∑

s=1
�̂stsℎs∕s!

)

dt

.

Notice that we omit the i-th observation when estimating the density at x⊺
i �. Similarly, we can estimate

log{1 − p(x⊺
i �)} by log(1 − ȳ) + log f̂0(x

⊺
i �) − log f̂ (x⊺

i �). As in Klein and Spady (1993), we then maximize
the quasi–likelihood to obtain a semiparametric estimate of �0, though we do not need to modify the quasi–
likelihood to allow for negative density estimates. We will refer to this as the PS-likelihood estimator.

Alternatively, we can write the (population) score as

s(�) = E
[

yiL′
0(x

⊺
i �) + (1 − yi)L′

1(x
⊺
i �) − L

′(x⊺
i �)

]

where L′
0, L′

1, and L′ are the log–derivatives of the density of x⊺
i �0. We then estimate the score using

sn(�, L̂
′
1, L̂

′
0, L̂

′
) = 1

n

n
∑

i=1

{

yiL̂
′
1(x

⊺
i �) + (1 − yi)L̂

′
0(x

⊺
i �) − L̂′

(x⊺
i �)

}

,

25Klein and Spady (1993) introduce two forms of trimming to ensure that the quasi–loglikelihood converges uniformly in �. In
their simulation study, they find that trimming does not appreciably affect the quantitative results. Following their example, we report
only the untrimmed versions of the estimators in this section.
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where L̂′
1, L̂′

0, and L̂′ are the estimated log–derivatives of the conditional and unconditional densities of x⊺
i �.

A semiparametric estimator for �0 is then obtained by solving for the value(s) of � for which the score is zero.
In case there are multiple solutions, we take the solution that attains the highest loglikelihood. We will refer to
this as the PS-score estimator. Note that we estimate the score of the true model, as opposed to the derivative
of the quasi–loglikelihood with respect to �. Consequently, the PS-score and PS-likelihood estimators can be
quite different. In the simulation results reported below, the correlation between the estimates is approximately
0.45, which is in fact weaker than the correlation between the PS-likelihood and Klein-Spady (KS) estimators
(0.59).

In the following exercise, we use the same homoskedastic simulation design as in Klein and Spady (1993).
The covariates are two–dimensional: xi1 is chi-square distributed with three degrees of freedom truncated
at six on the right and xi2 is an independent standard normal variable truncated at two and negative two.
Both covariates are standardized to have zero mean and unit variance. The random disturbance �i is standard
normal and independent of the x’s.

We take �01 = �02 = 1. Because �0 is only identified up to scale, we normalize ‖�‖ =
√

2 and �1 > 0.26

For the KS estimator, we use a fourth–order Epanechnikov kernel to estimate the density of x⊺
i �. For our

estimators, we choose gj(t) = (t + zl)S−j+2(t − zr)j+1, where zl and zr measure how close the point of
evaluation is to the boundary of the support of the x⊺

i �, and we use a truncated second–order Epanechnikov
kernel for mz. In the interior, the resulting !1 is a fourth–order Epanechnikov kernel when S = 3. Hence,
the pointwise variance of the dominant terms in the density estimates are the same for both KS and PS-
likelihood. The observed differences between them can be largely attributed to differences in the bias and
the boundary correction. For the PS-score estimator, we use S = 2 and recommend a bandwidth sequence
proportional to n−2∕7 so that |sn(�, L̂′

1, L̂
′
0, L̂

′) − sn(�, L′
1, L

′
0, L

′)| is asymptotically negligible compared to
|sn(�, L′

1, L
′
0, L

′) − s(�)|.27 This bandwidth sequence converges to zero more quickly than the bandwidths
used by Klein and Spady (1993) because the bias in the estimates of the log–derivatives of the density are
proportional to ℎ2 when S = 2.

For the sake of comparison, however, we use the same interior bandwidth ℎ ≈ 1.4 with all three methods.28

Near the boundaries of the support of the data, we multiply ℎ by 2 − min(zl, zr) so that the same window is
26Assuming �1 > 0 is a normalization because the propensity p(x⊺�) is not restricted to be increasing in x⊺�.
27One should trim the observations as discussed in Klein and Spady (1993) to ensure convergence in the quasi–score is uniform in

�, but we do not use any trimming in the reported simulation results.
28Following Klein and Spady (1993) we select ℎ proportional to n−1∕6.02. Unlike in their simulation exercise, however, we must

also select the constant of proportionality in the bandwidth sequence because we do not use a locally adaptive bandwidth. To do so,
we make a somewhat arbitrary appeal to Silverman’s rule–of–thumb for the fourth–order Epanechnikov kernel ℎ = 2.1276�n−1∕9,
where � is the standard deviation of the observations. After normalizing ‖�‖2 =

√

2, the standard deviation of x⊺
i � is √2. Hence,

we use ℎ = 2.1276
√

2n−1∕6.02.
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used to estimate the log–density and its derivatives at all points within distance ℎ of one of the boundaries.
The simulation was repeated 1000 times. Table 3 reports the simulated bias, median error, variance,

and median absolute deviation in the estimates of �2 from a sample of n = 100 observations. By design,
the PS-likelihood and KS estimators are as similar as possible given the two different approaches to density
estimation. It is therefore unsurprising that neither dominates the other in terms of bias and variance. The
variance of the PS-likelihood estimator is noticeably larger than that of the KS estimator, which one would
expect in light of the boundary correction which reduces bias near the boundaries at the cost of an increased
variance.

The PS-score estimator has the smallest variance, which one would also expect because it uses the same
bandwidth with a lower order polynomial approximation to the log–density. Interestingly, the PS-score
estimator has the smallest bias, as well, despite using the same bandwidth. The smaller bias is partially
due to the fact that the distribution of the PS-score estimator is less skewed than the other two sampling
distributions, as evidenced by the median errors. The median error of the PS-likelihood estimator is much
closer to zero and is less than that of PS-score, as we would expect from the higher order local polynomial
approximation. On the other hand, the PS-score estimator improves upon the KS estimator according to
all four performance measures. The relatively large bias and median error in KS may be symptomatic of
the frequently observed phenomenon in which higher order kernels and polynomial approximations do not
demonstrate their bias–reducing properties in small samples. In addition, the squaring of p̂ and 1 − p̂ in the
modified quasi–likelihood adds another source of bias to the KS estimator. Asymptotically, this modification
has no effect, but it essentially replaces the estimated p̂ with its absolute value since log(x2)∕2 = log |x|,
which naturally tends to decrease the variance and increase the bias of the KS estimator in finite samples.

Table 3: Simulation results for semiparametric estimates of the linear parameter in a binary choice model.
Estimator Bias Median Error Variance Median Absolute Deviation

KS −0.029 −0.008 0.040 0.122
PS-likelihood −0.026 −0.004 0.045 0.138

PS-score −0.013 −0.007 0.022 0.088

This example illustrates that estimating the log–derivative of the density can provide a more direct route
to the researcher’s ultimate goal and may improve on the finite–sample performance of existing methods,
even semiparametrically efficient ones. Though it would not be prudent to draw general conclusions based
on this example, we hope it is uncontroversial to note that correcting for boundary issues and nonpositive
densities estimates has predictable effects on the bias and variance of semiparametric estimators. The approach
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developed in this paper provides a single framework for dealing with boundary and nonpositivity issues so
that researchers can choose the inputs (ℎ, g) and possibly mz to meet their needs.

7 Conclusion

We develop asymptotically normal nonparametric estimators based on a log–polynomial approximation of
the unknown density function. By approximating the log–density with a polynomial, we can guarantee that
our estimated density is nonnegative; and by using a polynomial approximation instead of a local constant
approximation, we achieve the optimal rates of convergence at the boundary of the support as well as in the
interior.

Because our approach allows for a relatively larger degree of customization—the researcher must specify
a bandwidth, a kernel, and a vector–valued function g that is zero at the extremes of its support—we explore
the optimal set of inputs. Unlike the standard analysis of optimal kernel and bandwidth inputs, our estimator
is nonnegative at the point of evaluation under a relaxed set of constraints. Because these constraints were
needed in order to derive the optimal kernel for use with alternative methods, there is no interior solution
to the optimal choice of inputs using our approach. If one imposes the additional restriction that g cannot
cross zero, the AMSE–minimizing inputs achieve the same asymptotic variance as the standard kernel density
estimator with the Epanechnikov kernel in the interior and the optimal boundary kernel derived in Zhang and
Karunamuni (1998) at the boundary. Otherwise, if the researcher uses a larger bandwidth, marginal reductions
in the asymptotic mean square error are possible. In the extreme, an asymptotically unbiased estimator can be
obtained using a suitable choice of g. This approach would be analogous to the use of a higher–order kernel
in standard kernel density estimation, except that our methods would still guarantee a nonnegative estimate.

More generally, our approach is based on a sample analog to partial integration and can be applied to
other settings, as well, such as the estimation of hazard functions or propensity scores.

In simulation exercises, we explore the finite–sample behavior of our approach to density estimations
as well as the estimation of a semiparametric binary choice model. Using the constrained–optimal choice
of inputs designed to mimic the asymptotic behavior of alternative density estimators as closely as possible,
we unsurprisingly find comparable finite–sample performance, especially when compared with the local
likelihood estimator of Loader (1996). The advantage of our approach compared with Loader (1996) is
that our estimator is computationally simpler, which can be an important feature when the density is used
as an input in a estimation algorithm. As an illustration, we apply our approach to the estimation of the
semiparametric binary choice model studied by Klein and Spady (1993) and find that our method reduces the
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finite–sample bias and variance in their Monte-Carlo experiment.

A Proofs

A.1 Definitions

To simplify the argument of gj , define gℎxj(y) = gj
( y−x

ℎ

), noting that g′ℎxj(y) = 1
ℎ
g′j
( y−x

ℎ

). Rewrite (1) as
lℎx = Rℎx� + rℎx, where lℎx, Rℎx are a vector and a matrix, whose elements are

⎧

⎪

⎪

⎨

⎪

⎪

⎩

lℎxj = E
(

g′ℎxj(x1)
|

|

|

|

x − zℎ ≤ x1 ≤ x + ℎ
)

,

Rℎxjs = −E
(

gℎxj(x1)
(x1 − x)s−1

(s − 1)!
|

|

|

|

x − zℎ ≤ x1 ≤ x + ℎ
)

,
j, s = 1, 2,… , (7)

and where rℎx = lℎx − Rℎx� is the vector with elements

rℎjx = lℎjx −
S
∑

s=1
Rℎjsx�s = Rℎj,S+1,x�S+1 + o

(

ℎS
)

. (8)

Let l̂ℎx, R̂ℎx be sample analogs of lℎx, Rℎx, e.g.

l̂ℎxj =

n
∑

i=1
g′ℎxj(xi)

n{F̂ (x + ℎ) − F̂ (x − zℎ)}
,

where F̂ is the empirical distribution function.
Define �js(t) = −

{

gj(t)ts−1∕(s − 1)! = (z + t)j(1 − t)ts−1∕(s − 1)!
}

1(−z ≤ t ≤ 1) and �̃ = R−1
ℎxlℎx.

A.2 Estimation of derivatives

A.2.1 Bias

Lemma 1. Ωjs = ∫ 1
−z �jsz(t) dt =

1
(s−1)!

∫ 1
−z(z + t)

j(1 − t)ts−1 dt.

Proof. The right hand side equals

1
(s − 1)! ∫

1

−z
(z + t)j{1 + z − (z + t)}(z + t − z)s−1 dt =

1
(s − 1)!

(

(1 + z)∫

1

−z
(z + t)j(z + t − z)s−1 dt − ∫

1

−z
(z + t)j+1(z + t − z)s−1 dt

)

=
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1
(s − 1)!

s−1
∑

i=0

(

s − 1
i

)

(−z)i
(

(1 + z)∫

1

−z
(z + t)j+s−1−i dt − ∫

1

−z
(z + t)j+s−i dt

)

=

s−1
∑

i=0

(−z)i(1 + z)j+s+1−i

i!(s − 1 − i)!(j + s − i)(j + s − i + 1)
=

s−1
∑

i=0

i
∑

t=0

(

i
t

)

(−1)i+t(1 + z)j+s+1−t

i!(s − 1 − i)!(j + s − i)(j + s − i + 1)

=
s−1
∑

t=0
(1+z)j+s+1−t

s−1
∑

i=t

(−1)i+t

t!(i − t)!(s − 1 − i)!(j + s − i)(j + s − i + 1)
=

s−1
∑

t=0
(1+z)j+s+1−t

(−1)s+1+t(s − t)j!
(j + s + 1 − t)!t!

.

Lemma 2. rℎjx = lℎjx −
∑S
s=1 �sRℎjsx = �S+1ℎSΩj,S+1∕(1 + z) + o(ℎS).

Proof. From (7) and (8) it follows that

rℎxj = lℎxj −
S
∑

s=1
�sRℎxjs = − 1

F (x + ℎ) − F (x − zℎ) ∫

x+ℎ

x−zℎ
gℎxj(y)L′(y) dy −

S
∑

s=1
�sRℎjsx =

−
�S+1

F (x + ℎ) − F (x − zℎ) ∫

x+ℎ

x−zℎ
gℎxj(y)

(y − x)S

S!
f (y) dy + o(ℎS)

= −
ℎS+1�S+1

F (x + ℎ) − F (x − zℎ) ∫

1

−z

{

(t + z)j+1 − (1 + z)tj
} tS

S!
f (x + tℎ) dt + o(ℎS)

= −
ℎS�S+1

f (x)(1 + z) ∫

1

−z
�j,S+1,z(t)f (x) dt + o(ℎS)

=
ℎS�S+1Ωj,S+1(z)

1 + z
+ o(ℎS),

by the mean value theorem and lemma 1.

Lemma 3. Rℎxjs = ℎs−1Ωjs∕(1 + z) + o(ℎs−1).

Proof. Repeat the steps of the proof of lemma 2.

A.2.2 Distribution

Let B̂ℎxjs = R̂ℎxjs{F̂ (x+ℎ)− F̂ (x−zℎ)}∕ℎs, Bℎxjs = Rℎxjs{F (x+ℎ)−F (x−zℎ)}∕ℎs, âℎx = l̂ℎx{F̂ (x+

ℎ) − F̂ (x − zℎ)}∕ℎ, and aℎx = lℎx{F (x + ℎ) − F (x − zℎ)}∕ℎ.

Lemma 4. Bℎxjs = f (x)Ωjs + o(1).

Proof. Follows from lemma 3.

Lemma 5. B̂ℎx − Bℎx = Op(1∕
√

nℎ) and
√

nℎ3(âℎx − aℎx)
d
→ N{0, f (x)(1 + z)V }.
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Proof. We first show the result for âℎx.

√

nℎ3(âℎx − aℎx) =
1

√

nℎ

n
∑

i=1

{

g′ℎxj(xi) − Eg′ℎxj(x1)
} d
→ N{0, f (x)V } . (9)

The normality of the limit follows from a standard central limit theorem, e.g. Eicker (1966). Because
the estimator is linear and {xi} is i.i.d., the asymptotic mean and variance are easily obtained, e.g. the
(j, s)–element of the asymptotic variance matrix is

nℎ3 Cov
(

âℎxj , âℎxs
)

= ℎCov
(

g′ℎxj(x1), g′ℎxs(x1)
)

= f (x)∫

1

−z
g′j(t)g

′
s(t) dt + o(1) = f (x)V + o(1).

Now, for any j, s = 1,… , S,

√

nℎ(B̂ℎxjs − Bℎxjs) =
1

√

nℎ

n
∑

i=1

{

�js
(xi − x

ℎ

)

− E�js
(x1 − x

ℎ

)

}

,

which by standard kernel estimation theory has a limiting mean zero normal distribution and is hence
Op(1).

Proof of theorem 1. Recall that �̃ = R−1
ℎxlℎx. The bias result then follows immediately from lemmas 2 and 3.

Now the asymptotic distribution. Note that �̃ = Λ−1
ℎ B

−1
ℎxaℎx. Likewise �̂ = Λ−1

ℎ B̂−1
ℎx âℎx. Thus,

√

nℎ3Λℎ(�̂ − �̃) =
√

nℎ3(B̂−1
ℎx − B

−1
ℎx )(âℎx − aℎx) +

√

nℎ3(B̂−1
ℎx − B

−1
ℎx )aℎx +

√

nℎ3B−1
ℎx (âℎx − aℎx) =

Op
{

(nℎ)−1∕2
}

+ Op(ℎ) + B−1
ℎx

√

nℎ3(âℎx − aℎx) = B−1
ℎx

√

nℎ3(âℎx − aℎx) + op(1). (10)

Since limn→∞ Bℎx = f (x)Ωjs by lemma 4, the stated result follows from lemma 5.

A.3 Estimation of L

Let  n denote the convergence rate of maxs=1,…,S
|

|

ℎs(�̂s − �s)||, i.e. n−(S+1)∕(2S+3), which is n−2∕5 if S = 1.
If S = 2 then the rate is n−3∕7.

Call the numerator and denominator in (3) N̂ and D̂, respectively, and let N = f (x), D = 1. Then, our
proofs will be based on an expansion of the form

N̂
D̂

− N
D

≃
(N̂ −N) − (N∕D)(D̂ −D)

D
≃ {N̂ − f (x)} − f (x)(D̂ − 1), (11)

where ≃ means that the omitted terms are asymptotically negligible.
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The first lemma is concerned with addressing the influence of the �̂’s from D̂.

Lemma 6.

∫

1

−z
mz(t)

{

exp
(

S
∑

s=1

�̂stsℎs

s!

)

− exp
(

S
∑

s=1

�stsℎs

s!

)

}

dt =
S
∑

s=1
ℎs(�̂s − �s)cmsz + op( n), (12)

Proof. Expanding exp
(
∑S
s=1 bsℎ

sts∕s!
) about [�1ℎ ⋯ �SℎS], the left side in (12) equals

∫

1

−z
mz(t)

S
∑

s=1
(�̂s−�s)

tsℎs

s!
exp

(
∑S
s=1 �st

sℎs

s!

)

+op( n) =
S
∑

s=1
(�̂s−�s)ℎs ∫

1

−z

mz(t)ts

s!
f (x + tℎ)
exp(�0)

dt+op( n)

=
S
∑

s=1
(�̂s − �s)ℎs ∫

1

−z

mz(t)ts

s!
f (x)

exp(�0)
dt + op( n) =

S
∑

s=1
(�̂s − �s)ℎscmsz + op( n),

as asserted.

A.3.1 Bias

The next few lemmas are concerned with the asymptotic bias.

Lemma 7. The bias in N̂ − f (x) is f (x)
∑S+1
s=1 Ps(�1,… , �s)cmszℎs + o(ℎS+1), where Ps is a complete

exponential Bell polynomial.

Proof. We have

EN̂ = 1
ℎ ∫

x+ℎ

x−zℎ
mz

(y − x
ℎ

)

f (y) dy = ∫

1

−z
mz(t)f (x + tℎ) dt = f (x) +

S+1
∑

s=1
f (s)(x)cmszℎs + o(ℎS+1)

= f (x) + f (x)
S+1
∑

s=1
ℎsPs(�1,… , �s)cmsz + o(ℎS+1),

by Faà di Bruno’s theorem.

Lemma 8. Letting �∗s = 1(s ≤ S)�s, the bias in D̂−1 is
∑S+1
s=1 Ps(�∗1 ,… , �∗s )cmszℎ

s+�S+1ℎS+1
∑S
s=1 cmszbs+

o( n).

Proof. The bias has two components: one is due to the estimation of � and the other to the finite polynomial
approximation. Consider the latter first. We have

1
ℎ ∫

x+ℎ

x−zℎ
mz

(y − x
ℎ

)

exp
(

S
∑

s=1

�s(y − x)s

s!

)

dy − 1 = ∫

1

−z
mz(t) exp

(

∞
∑

s=1

�∗s t
sℎs

s!

)

dt − 1 =
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S+1
∑

s=1
Ps(�∗1 ,… , �∗s )cmszℎ

s + o(ℎS+1).

For the bias due to the estimation of � note that by lemma 6 and theorem 1 this bias is equal to
∑S
s=1 ℎ

scmsz(�S+1ℎS+1−sbs) + o( n) = �S+1ℎS+1
∑S
s=1 cmszbs + o( n).

Lemma 9. The bias in N̂ − f (x)D̂ is f (x)�S+1ℎS+1
(

cm,S+1,z −
∑S
s=1 cmszbs

)

+ o( n).

Proof. By lemmas 7 and 8, the desired bias is

f (x)
S+1
∑

s=1
Ps(�1,… , �s)cmszℎs − f (x)

(S+1
∑

s=1
Ps(�∗1 ,… , �∗s )cmszℎ

s + �S+1ℎS+1
S
∑

s=1
cmszbs

)

+ o( n)

= f (x)�S+1ℎS+1
(

cm,S+1,z −
S
∑

s=1
cmszbs

)

+ o( n),

as claimed.

Lemma 10. D̂ − 1 = op(1).

Proof. Follows from lemmas 6 and 8 and theorem 1.

A.3.2 Distribution

Lemma 11.
√

nℎ
{

N̂ − f (x)D̂
} d
→ N(ℬ,V ).

Proof. The bias result follows from lemma 9 and the definition of Ξ. For asymptotic normality and the
variance formula, note that

N̂ − EN̂ = 1
nℎ

n
∑

i=1

{

mz
(xi − x

ℎ

)

− Emz
(x1 − x

ℎ

)

.
}

Note further that by lemma 6, the asymptotic distribution of D̂ net of bias is governed by ∑S
s=1 ℎ

s(�̂s− �̃s)cmsz,

which by (9) and (10) and lemma 4 is

ℎc⊺mzΛℎ(�̂ − �̃) =
c⊺mzΩ

−1

f (x)
1
nℎ

n
∑

i=1

{

g′
(xi − x

ℎ

)

− Eg′
(x1 − x

ℎ

)

}

+ op( n).

Thus,

√

nℎ{N̂ − f (x)D̂ − E(⋅)} = 1
√

nℎ

n
∑

i=1

{

mz
(xi − x

ℎ

)

− c⊺mzΩ
−1g′

(xi − x
ℎ

)

− E(⋅)
}

+ op(1)
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= 1
√

nℎ

n
∑

i=1

{

!z
(xi − x

ℎ

)

− E!z
(x1 − x

ℎ

)

}

+ op(1),

which has the stated limit distribution by e.g. Eicker (1966).

Lemma 12. The omitted terms in (11) are op( n).

Proof. Write N̂∕D̂ − f (x)∕1 = {N̂ − f (x)D̂} + {N̂ − f (x)D̂}(1∕D̂ − 1) ≃ N̂ − f (x)D̂. by lemma 10.
Apply lemmas 9 and 11.

Proof of theorem 2. We show the result for f̂ where the result for L̂ follows from the delta method. By
lemma 12 we only need to consider N̂ − f (x)D̂. Apply lemmas 9 and 11.

A.4 Estimation of f (x) and f ′(x) when f (x) = 0

Lemma 13. If S = 1, the rates in the following table apply to the variance of f̂m, l̂ℎx, and R̂ℎx.

condition V f̂m, V R̂ℎx V l̂ℎx
0 < f (x) 1

√

nℎ
1

√

nℎ3

f (x) = 0 < f ′(x) 1
√

n
1

√

nℎ2

f (x) = f ′(x) = 0 < f ′′(x)
√

ℎ
n

1
√

nℎ

Proof. We show the rates for l̂ℎx where the other rates obtain similarly. By a standard kernel variance
expansion, we get

V l̂ℎx(x) ≃
1
nℎ4 ∫

x+ℎ

x−zℎ
g′
( t − x

ℎ

)2
f (t) dt ≃ 1

nℎ3 ∫

1

−z
g′(t)2f (x + tℎ) dt

= f (x)O
( 1
nℎ3

)

+ f ′(x)O
( 1
nℎ2

)

1(z < 1) + f ′′(x)O
( 1
nℎ

)

.

The stated results then follow by taking square roots of the relevant rate on the right hand side in the last
displayed equation.

Lemma 14. If S = 1, −Ω11(z) = cm0z = 1 and Ω12(1) = cm11 = 0, the dominant terms in ER̂ℎx − f (x) and

El̂ℎx − f ′(x) are contained in the following table.
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condition Ef̂m − f (x) ER̂ℎx − f (x) El̂ℎx − f ′(x)

0 < f (x), x = zℎ ℎcmz1f ′(0) −ℎΩ12f ′(0) −ℎΩ12f ′′(0)

0 < f (x), 0 < x ℎ2cm12f ′′(x) −ℎ2Ω13f ′′(x) o(ℎ)

f (x) = 0 < f ′(x) ℎcmz1f ′(0) −ℎΩ12f ′(x) −ℎΩ12f ′′(x)

f (x) = f ′(x) = 0 < f ′′(x) ℎ2cmz2f ′′(x) −ℎ2Ω13f ′′(x) o(ℎ)

Proof. These follow from standard kernel bias expansions.

Proof of theorem 3. BecauseΩ11 ≠ 0 and g can be multiplied by any constant without affecting the estimator,
we assume without loss of generality that Ω11 = −1. Next, we observe that

�̂1 ≃
− 1
nℎ2

∑

i g
′(xi−x

ℎ

)

+ E 1
nℎ2

∑

i g
′(xi−x

ℎ

)

+ f ′(x) − ℎΩ12f ′′(x)
1
nℎ

∑

i g
(xi−x

ℎ

)

− E 1
nℎ

∑

i g
(xi−x

ℎ

)

+ f (x) − ℎΩ12f ′(x) − ℎ2Ω13f ′′(x)
. (13)

Hence, ℎ�̂1 = op(1) by lemmas 13 and 14 when f (x) = f ′(x) = 0 and g is symmetric so that Ω12 = 0. Thus,

f̂ (x) − f (x) = f̂ (x) =
1
nℎ

∑

im
(xi−x

ℎ

)

− E 1
nℎ

∑

im
(xi−x

ℎ

)

+ ℎ2cm12f ′′(x) + o(ℎ2)

1 + op(1)
,

which implies the stated result for the density estimator since 1
nℎ

∑

im
(xi−x

ℎ

)

− E 1
nℎ

∑

im
(xi−x

ℎ

)

= Op(n−3∕5)

by lemma 13.
The result involving f̂ �̂1 follows from the fact that f̂ = Op(ℎ2) and ℎ�̂1 = op(1).

Proof of theorem 4. BecauseΩ11 ≠ 0 and g can be multiplied by any constant without affecting the estimator,
we assume without loss of generality that Ω11 = −1.

If f ′(0) > 0, Ω12 = 0, and x = 0, then ℎ�̂1 ≃ −f ′(0)∕{ℎΩ13f ′′(0)} diverges by (13).
If Ω12 ≠ 0, by (13) we have ℎ�̂1 ≃

Ω11
Ω12

= −1
Ω12

if f ′(0) > 0 or ℎ�̂1 ≃
Ω12
Ω13

if f ′(0) = 0. Hence, if Ω12 ≠ 0

then

ℎ�̂∗
1 = ℎ�̂1max

(

1, ℎqA�̂1
)

≃ Aℎq−1(ℎ�̂1)2 ≃ Aℎq−1
1{f ′(0) > 0} + 1{f ′(0) = 0}Ω2

12

1{f ′(0) > 0}Ω2
12 + 1(f ′(0) = 0)Ω2

13

diverges to ∞.
In either case, the denominator in the definition of f̂ ∗ explodes. Thus, although the numerator is Op(n1∕5)

because cmz1 is generically nonzero, f̂ ∗ converges exponentially toward zero.
If one considers the case x = zℎ then much the same derivations arise except that one has to take additional
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expansions. For instance, in the Ω12 ≠ 0 and f ′(0) = 0 case, we would have

ℎ�̂1 ≃ ℎ
f ′(zℎ) − ℎΩ12f ′′(zℎ)

−ℎΩ12f ′(zℎ) − ℎ2Ω13f ′′(zℎ)
≃

Ω12 − z
Ω12z + Ω13

.

B Existing methods

This appendix presents the key equations in a standardized notation for related estimators.

B.1 Local polynomial regression

The estimator analyzed in Cattaneo et al. (2019) is a local polynomial regression of Fn(xi) on xi. That is, they
estimate a smooth distribution and its derivatives by solving

min
b∈ℝS+1

∑

i

[

Fn(xi) − pS+1(xi − x)
⊺b
]2k

(

xi − x
ℎ

)

where pS+1(u) = [1 u … uS+1]⊺. The first–order conditions yield the linear system of equations
∑

i
k
(

xi − x
ℎ

)

(xi − x)jFn(xi) =
∑

i
k
(

xi − x
ℎ

)

(xi − x)jpS+1(xi − x)
⊺b j = 0, 1,… , S + 1 . (14)

Meanwhile, Lejeune and Sarda (1992) use a closely related local polynomial approximation to the function
Fn. They solve

min
b∈ℝS+1 ∫

U

0

[

Fn(y) − pS+1(y − x)
⊺b
]2k

(

y − x
ℎ

)

dy ,

which yields the linear system

∫

U

0
k
(

y − x
ℎ

)

(y−x)jFn(y) dy = ∫

U

0
k
(

y − x
ℎ

)

(y−x)jpS+1(y−x)
⊺bdy j = 0, 1,… , S+1 . (15)

The difference between the estimated polynomial coefficients using (14) and (15) is Op(1∕n), which derives
from the difference between n ∫ x(i)

x(i−1)
k
( y−x

ℎ

)

(y− x)j dy and k(x(i)−x
ℎ

)

(x(i) − x)j for j = 0,… , 2(S + 1), where
the subscripts denote the i–th order statistic.
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B.2 Local likelihood density estimation

The estimator in Loader (1996) solves

max
b∈ℝS+1

∑

i
k
(

xi − x
ℎ

)

pS+1(xi − x)
⊺b − n∫

U

0
k
(

y − x
ℎ

)

exp{pS+1(y − x)
⊺b} dy .

The first term in the objective represents the locally weighted log–likelihood of the data drawn from a log–
polynomial density, while the second term comes from the constraint that the density must integrate to one.
The first–order conditions for this problem yield the nonlinear system

1
n
∑

i
k
(

xi − x
ℎ

)

(xi − x)j = ∫

U

0
k
(

xi − x
ℎ

)

(y − x)j exp{pS+1(y − x)
⊺b} dy j = 0, 1,… , S + 1 .

For j = 0, the above equation resembles (3), while for j > 0, the left side is a local sample moment, and the
right side is the local population moment implied by the polynomial approximation to the log–density.

B.3 Generalized reflection method

The generalized reflection method uses a transformation of the data such that the transformed data takes
support on the entire real line, has a density that coincides with the density of the original data on [0,U),
and has a square–integrable second derivative. A transformation that achieves these aims is the mapping
{xi} ↦ {xi,−�(xi)} where the function � is given by �(x) = x + �1x2 + A�21x

3 for some A > 1∕3. The
constant A ensures the transformation is strictly increasing; Karunamuni and Alberts (2005) and Karunamuni
and Zhang (2008) use A = 0.55 in their simulations. The density estimator is given by

1
nℎ

∑

i
k
(

x − xi
ℎ

)

+ k
(

x + �n(xi)
ℎ

)

where �n is an estimator of the function �. The authors suggest estimating � by substituting �1 with

log fn(ℎ) − log fn(0)
ℎ

,

where
fn(ℎ) =

1
n2

+ 1
nℎ

∑

i
k
(

x − xi
ℎ

)

, fn(0) = max
{

1
n2
, 1
nℎ0

∑

i
k0

(

−xi
ℎ

)}

,

ℎ0 is a bandwidth and k0 is a boundary kernel that satisfies ∫ 0
−1 k0(t) dt = 1, ∫ 0

−1 k0(t)t dt = 0, and
∫ 0
−1 k0(t)t

2 dt ≠ 0. We note, however, that the details of the finite–difference approximation to the derivative
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of log f can be modified as long as the estimate of �1 converges at the rate of n−1∕5, which is the optimal rate
of convergence when f is assumed to have two continuous derivatives.
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