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Abstract

We propose a conformant likelihood-based estimator with exogeneity restrictions (CLER)
for random coefficients discrete choice demand models that is applicable in a broad range of
data settings. It combines the likelihoods of two mixed logit estimators—one for consumer
level data, and one for product level data—with product level exogeneity restrictions. Our
estimator is both efficient and conformant: its rates of convergence will be the fastest possible
given the variation available in the data. The researcher does not need to pre-test or adjust the
estimator and the inference procedure is valid across a wide variety of scenarios. Moreover,
it can be tractably applied to large datasets. We illustrate the features of our estimator by
comparing it to alternatives in the literature.

1 Motivation

First introduced in Berry et al. (1995, BLP95), random coefficients discrete choice demand
models provide a tractable framework to flexibly estimate substitution patterns between many
differentiated products in the presence of price endogeneity. Since its introduction, this model
has been estimated using a wide array of datasets featuring consumer level data, product level
data, or a mixture of both. We propose a likelihood-based estimator for BLP-style models that
applies to all the above data settings. Intuitively, it combines the likelihoods of two mixed logit
estimators, one for consumer level data (assuming it is available), and one for product level data,
along with product level exogeneity restrictions. We impose no additional assumptions over
those posited in BLP95, which are also used in other estimators extended with consumer level

data (e.g., Petrin 2002; Berry et al. 2004a (BLP04); Goolsbee and Petrin 2004; Chintagunta and
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Dube 2005).

Researchers have applied varied approaches when confronted with different types of data
(e.g., consumer choices, market shares, or a combination of both). We note that the best achiev-
able convergence rate varies with (the relative growth rates of) data dimensions and other cir-
cumstances. We propose a single estimator that achieves the optimal rate and is efficient in a
wide variety of empirical settings. We call our estimator conformant for its ability to achieve the
optimal rate under a variety of circumstances. Conformancy is a novel property in this literature.

To fix ideas, consider first the case in which a large sample of consumer purchase data
is available. The basic structure of the demand model proposed in BLP is mixed (or random
coefficients) multinomial logit. The standard multinomial logit MLE has nice computational
properties. For example, it is globally concave in the parameters, and the gradient and Hessian
have simple expressions. Therefore, with consumer level data in hand, it is natural to consider
estimating a BLP model via MLE using the individual likelihood of purchase. However, in order
to accommodate price endogeneity, the basic structure of BLP requires the estimation of product
(by market) quality parameters.! It can be demanding of consumer level data alone to estimate
such a specification due to the presence of potentially many (hundreds, or even thousands,
depending on the application) product quality parameters.

To address this issue, we incorporate product level data on market shares. We view our
consumer level sample as a (perhaps small) subset of the population of individual choices repre-
sented by the observed market shares. From this perspective, the loglikelihood of both individual
consumer data (‘micro’ data) and market shares (‘macro’ data) consists of two terms: a micro
term following the mixed logit and a macro term that integrates over the distribution of con-
sumer characteristics in the population. This mixed-data likelihood estimator (MDLE) could be
used to estimate three types of parameters (1) unobserved preference heterogeneity (often re-
ferred to as “random coefficients” in the literature); (2) observed preference heterogeneity based
on individual demographics (referred to as “demographic interactions”); and (3) product-specific
quality. However, there are two potential drawbacks to the MDLE approach. First, the identifi-
cation of unobserved preference heterogeneity depends on sufficient exploitable demographic
variation, as we describe in section 4.2. Second, this approach alone does not yield mean tastes

for product characteristics, although one could incorporate a second step which accommodates

1BLP95 and Nevo (2000) have noted that product quality parameters could be used to separate the estimation of
‘nonlinear’ parameters that govern substitution patterns from the ‘linear’ parameters of the model such as the mean
price effects.



endogenous characteristics (such as price).

Our full estimator extends the MDLE approach with an additional term to directly incorpo-
rate information contained in the product level exogeneity restrictions of BLP95. This estimator
achieves the conformance property, so we refer to it as the Conformant Likelihood with Exo-
geneity Restrictions (CLER) estimator. The exogeneity restrictions are additional assumptions
on the data-generating process, providing a distinct source of identifying variation beyond the
likelihood. The main benefit of CLER relative to MDLE arises when there are more exogeneity
restrictions than product characteristics. In the presence of such overidentification, the extra
information can help identify the preference heterogeneity parameters even when they are not
recovered using MDLE alone. Indeed, as BLP show, with sufficient exogeneity restrictions, it
is possible to identify all model parameters even if the consumer sample size falls to zero. The
primary contribution of this paper is to provide an estimator that fully exploits these two sources
of identifying variation to achieve the fastest possible rate of convergence, efficiency, and valid
inference without relying on any pre-test of the data or tuning parameters.

The CLER estimator is compatible with all datasets in the applied literature of which we are
aware. In particular, it is well-behaved with consumer samples of any size, from zero to a full
census of the market. The objective function comprises three terms that can diverge at different
rates: the micro loglikelihood with the consumer sample size, the macro loglikelihood with the
market size, and a GMM objective function based on the product exogeneity restrictions with the
number of products. These differing rates in the objective function are what make our estimator
conformant: the rates of convergence will adjust accordingly and depend on the relative sample
sizes and strength of information from the three terms.>

The conformance property results from the CLER estimator incorporating two distinct
sources of identification for the consumer heterogeneity parameters. As we explain in section 5,
observed variation in demographics identifies both observed and unobserved taste heterogeneity
aslong as that variation shifts consumers’ utility across products.® As emphasized by Gandhi and
Houde (2020, GH20), overidentifying product level exclusion restrictions can also identify taste
heterogeneity. If the number of sampled consumers is much larger than the number of prod-
ucts, then exploiting the identifying information (if present) in the micro sample will produce a

faster convergence rate than relying on product level exclusion restrictions. In this case, MDLE

The use of the plural ‘rates’ is because different elements of our estimator vector converge at different rates.
3Berry and Haile (2020) make a similar point in a nonparametric context.



and CLER are asymptotically equivalent and efficient. Adding the product level exclusions to
the estimator is useful when the consumer sample is small (or not present) or its identfying de-
mographic variation is weak (or nonexistent). Note that when this variation is nonexistent, the
information used by the MDLE estimator is insufficient for identification. The CLER estimator,
on the other hand, still converges at the optimal rate and is efficient because it also exploits the
product level exclusions. However, the rate of convergence of some parameter estimates will
then be slower (though still optimal) due to the slower divergence rate of the product restric-
tions component compared to the micro likelihood. Our estimator also covers the intermediate
cases between the above two extremes without adjustment and the case where different data is
available in different markets.

Efficiency depends on two features of the objective function. First, the likelihood and mo-
ments portions of the objective function are uncorrelated because the loglikelihood sums over
individuals, treating product qualities as parameters. In contrast, the moments component
involves sums over products where variation in product quality gives rise to the product level
structural error term. The optimal weight matrix to use is the same as that in standard GMM
estimation, except now the scale matters to properly weight across likelihood and GMM terms,
as we describe in sections 3.2 and 4.1.

We show that conducting inference using formulas familiar from the standard extremum
estimation framework is asymptotically valid. We formally establish consistency and asymptotic
normality in theorem 1, whose proof is nonstandard to accommodate the conformance features of
the CLER estimator. Validity obtains regardless of the relative divergence rates* and even though
the vector of product quality parameters increases in dimension. More generally, the inference
procedure is robust to the source of identification, i.e. the inference procedure is valid both when
the micro data provide sufficient information to recover the taste heterogeneity parameters and
when such information must come from the product level exclusion restrictions: one does not
have to specify or know.

Another advantage of the CLER estimator over alternative methods popular in the literature
that use an objective function with a constraint (product shares must match choice probabilities
exactly) is more robust inference. In particular, methods that impose a share constraint require

that the total number of consumers S in the micro sample across all markets is negligibly small

4E.g., the number of markets, the number of consumers in the population of each market, the number of
consumers in the micro sample, and number of products.



compared to the smallest market size min,,, NV,, and, if the product quality parameters are of
interest (e.g., as in merger simulation exercises), even that S is negligibly small compared to
min,, y/N,,.° Absent these additional restrictions, the computed standard errors would be too
small.

While the statistical properties of our estimator make it of theoretical interest, it is also suitable
for applied work. One might expect that the high dimensionality of the parameter space due to
the product quality parameters would be intractable. However, we show in section 7 that the
structure of the objective function simplifies the computational problem considerably. We have
verified that this procedure can be used successfully for problems with over 100,000 products
and millions of consumers. Another concern might be the bias due to numerical integration
to compute choice probabilities. We discuss numerical integration in section 7.2 and provide a
Monte Carlo illustrating performance in section 9.2.4.

The CLER estimator is most directly comparable to GMM approaches based on micro-
moments (e.g. Petrin 2002 and BLP04). In related work, Conlon and Gortmaker (2023, CG23)
provide a comprehensive discussion of best practices for incorporating moments based on a
variety of types of auxiliary consumer level data into this canonical GMM-based estimation of
BLP-style models.This framework does not share our properties of efficiency and conformancy.
That said, the GMM approach may be better suited to certain types of data, for example, a situa-
tion when the researcher only has access to summary statistics from an individual-level survey
instead of the individual responses themselves or where the model is so complex that analytic
formulas for the Hessian are difficult to obtain, which would make computation of our estimator
more expensive.

Other researchers have proposed using the likelihood of consumer data in estimating BLP-
style models (e.g., Goolsbee and Petrin, 2004; Chintagunta and Dube, 2005; Train and Winston,
2007; Bachmann et al., 2019).° The key difference with our approach is twofold. First, they use a
two-stage procedure, and so cannot take full advantage of the combination of consumer choice
data, product market shares, and over-identifying product level restrictions. Second, like Petrin
(2002) and BLP04, these papers recover product quality parameters using the BLP inversion,

whereas our approach achieves efficiency by estimating product quality parameters using the

In BLP95 and BLP04 the N,,,’s are assumed to be effectively infinite.

SMLE is a popular choice for estimating discrete choice models that do not have endogenous product character-
istics; see e.g. hospital choice as in Ho (2006) and urban/location models such as Bayer et al. (2007). Our framework
nests these applications.



entire CLER objective function. Another related paper is Allen et al. (2019), who combine the
likelihood of an equilibrium search model with a penalty term of moment equalities.

Our approach has broad applicability and is appropriate for many demand estimation appli-
cations where the researcher has both product level data on shares and consumer level data on
purchases. Berry and Haile (2014) showed identification of objects in a nonparametric class of
these models using product level data and sufficient instruments; Berry and Haile (2020) shows
how observing consumer level data reduce the number of instruments required. Although
BLPO04 and Petrin (2002) are canonical examples of applications, there are many more examples
of applied research where demand is estimated with product level and consumer level data. An
incomplete list of examples includes Goeree (2008), Ciliberto and Kuminoff (2010), Crawford
and Yurukoglu (2012), Starc (2014), Wollmann (2018), Crawford et al. (2018), Hackmann (2019),
Neilson (2019), Backus et al. (2021), Grieco et al. (2023), Montag (2023), and Jiménez-Herndndez
and Seira (2021). A specific example common in economics and marketing is when researchers
combine grocery store scanner data with household level data, for example as in the IRI data
or the Kilts Center Nielsen data. Examples include Chintagunta and Dube (2005) (IRI) and
Tuchman (2019) and Backus et al. (2021) (Nielsen).

Finally, our problem and approach share features with several strands of the econometrics
literature. For instance, Imbens and Lancaster (1994) also consider the problem of combining
different sources of data albeit that there the micro data are assumed to provide identification
and the different data sources are either independent with sample sizes growing at the same rate
or the macro data can be considered to be of infinite size. Ridder and Moffitt (2007) provide a
survey of methods to combine different data sets and van den Berg and van der Klaauw (2001)
combine data sets to estimate a duration model. Further, itis common in the panel data literature
to have the dataset grow in different dimensions at different rates (e.g. Hahn and Newey, 2004),
but we know of no examples in which there are as many growth dimensions to consider as here:
the number of markets and products, the population sizes in each market, and the number
of sampled consumers in the micro sample. Third, having different elements of the estimator
vector converge at different rates is a common feature of the semiparametric estimation literature
(e.g. Robinson, 1988). Lastly, Abadie et al. (2020) consider the case of sample size approaching
population size; their problem is different from the ones studied here.

There are several econometrics papers that cover random coefficient discrete choice models

with only product-level data. The first such paper is Berry et al. (2004b, BLiP04). Freyberger



(2015) and Hong et al. (2021) are closer in spirit to ours in that the number of markets increases,
whereas in BLiP04 the number of products increases but the number of markets is fixed. Myojo
and Kanazawa (2012) show how additional moments can be constructed on the basis of consumer
level data and discuss supply side restrictions.

The following section reviews the random coefficients demand model and the data available
in our setting. Section 3 proposes our estimator. Conformance and efficiency properties are de-
scribed in section 4. Section 5 explores the source of variation in the demographic data exploited
to identify taste heterogeneity. Section 6 illustrates the trade-offs in going from the CLER estima-
tor to the GMM estimators that are commonly used in applied work. Section 7 argues for the
computational tractability of the CLER estimator; we provide a software package to demonstrate
feasibility and facilitate implementation.” Section 8 introduces our inference procedure. Sec-
tion 9 compares the finite sample properties of CLER relative to MDLE and a canonical GMM

estimator. Section 10 concludes.

2 Random Coefficients Demand Model

This section briefly reviews the random coefficients discrete choice demand model and describes
the data used by our estimator. The model matches that of BLP95 with slightly adjusted notation
for clarity. We will assume the researcher has access to both product level shares and a sample
consumer level choices. Importantly, our estimator will assume that consumer level choices
represent a subset of consumers on which the market level shares are based. This is in slight

contrast to the previous literature, which has treated micro and macro data as different samples.

2.1 Model

The econometrician observes M markets. In each market m, J,,, products are available for pur-

chase. A product j in market m is described by the tuple (x,,, &, ), where z,,,, = (Z;,,,, j)

isa d,-dimensional vector of observed characteristics of the product and ¢;,,, is a scalar unob-
served product attribute. The only distinction between 7 ;,,, and p,,,, (typically price) is that 7 ;,,,
is uncorrelated with {;,,,, so we frequently refer only to z,,, for notational convenience. There
are INV,,, consumers in market m. Consumers are characterized by (2;,,,, Vi, €i..m) Where z;,, isa
d -vector of potentially observable consumer characteristics (such as income or location), and

Vim isad,, < d_-vector of unobservable consumer taste shocks to preferences for product charac-

"The Grumps package is available at https://github.com/NittanyLion/Grumps. j1.
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teristics. Finallye, ,,, isa J,,, + 1-vector of idiosyncratic product taste shocks for each product and
an outside good (e.g., no purchase) that is distributed according to the standard Type-I extreme
value (Gumbel) distribution. In the population, z;,, and v,,,, are mutually independent and dis-
tributed according to known distributions GG,,, and F, ,, respectively. In practice, the distribution
of z;,, is typically taken from external data (such as the population census) while the distribution
of v;,, is typically assumed to be a standard normal and independent across components of v,
A consumer in market m maximizes (indirect) utility by choosing from the .J,, available
products and the outside good, indexed by zero. Let y, ;,,, = 1 if consumer ¢ in market m chooses

product j and zero otherwise. Utility of consumer ¢ when purchasing product j in market m is

uijm 5jm + :u’] + szm + 813m7 (1)

where d,, = a:;m B + &, represents the mean utility for product j for consumers in market m,
,uj;');” = p* (T, 24 0°) represents deviations from mean utility due to observed demographic

variables z;,,,, and p’ it = 17(T gy Vi 07) are deviations due to taste shocks v;,,,. There isno

im>
real need to assume 4, has this linear form but this is the most common specification. Typically,
p* is a linear combination of products of elements of x ;,, and z,,,, parameterized by 6°. Aswe
shall see below, some of our results depend on whether 6 is such that 9,,* = 0, i.e., when
changes in observed demographics do not affect utility. For notational ease, we assume without
loss of generality that this is true if and only if §* = 0, which corresponds to the typical case
justdescribed. Finally, p/” is typically a linear combination of product characteristics and taste
shocks parameterized by 6”. Utility of the outside good is normalized to u,,,,, = €;4,,.- When
convenient, we collect the consumer heterogeneity parameters into the vector § = [6*",60""]".

The model yields choice probabilities for consumer i of selecting product j conditional on

demographics z;,,, and product characteristics x,,, as a function of parameters,

ex m+ 2m+ ]m
T (0,0) = Pr(Yijm = 1] 2ipn, @ / mp jm - Hijm & 1) aF (). @)
Z eXp 5ﬁm + luzﬁm + 'uzém)

35 ( lm?y96)

Jjm

where d,,,, = pgim = g = 0forall i, m.
Similarly, unconditional choice probabilities, which correspond to expected market shares,

are obtained by integrating 7, with respect to the distribution of consumer demographics,



ij(975) = Pr(yijm =1lz,,)= /ﬂfm(9,5) dG,, ().

In addition to the structure imposed on choice probabilities, the model imposes product level

exogeneity restrictions of the form,?

E(€mbjm) =0, (3)

where b, is a vector of instruments which includes 7 ;,,,. Further, b;,, may contain additional

jm
exogeneity restrictions. The literature has used various approaches such as cost shifters, BLP
instruments, Hausman instruments, Waldfogel instruments, and differentiation instruments
(see Gandhi and Nevo, 2021). These moment restrictions will serve two purposes. First, they
are needed to identify mean product utility parameters, 5. Second, if d;, > d 4 they may provide
additional information that is potentially useful in estimating other model parameters. For
example BLP95 uses restrictions of this form to recover consumer heterogeneity parameters 6 in

the absence of consumer level data.

2.2 Data

The researcher has access to two types of data on consumer choices. First, she observes market
level data on the quantity of purchases, the vector of characteristics z ;,,, of each product, and
the total market size, Nm.9 Each consumer has unit demand and purchases either one of the

“inside” products or the outside good. That is, the researcher can construct market shares

1
Sim = 3~ 2 Yigm: ()
Nm =1

Note that the observed market shares s,,,, need not equal choice probabilities 7, due to the finite
p
population size, however s, — 7., as N,, — oc.
Second, for a subset of .S,,, consumers, the researcher observes both the consumers’ choices

and their demographics. That is, the researcher observes {(y;.,,,, Z;,, ) } for these consumers. We

use D,,, as adummy variable to denote whether consumer 7 is in this micro-sample. As we will

describe below, our methodology combines the micro-sample with the product shares by inte-

80ne could replace (3) with a conditional expectation and derive optimal instruments, which would produce a
two-step procedure in which each step has a condition of the form (3), with the instruments b,,, in the second step
generated from the first step.

9As in the previous literature, researchers need to observe or make an assumption regarding N,,, in order to
compute market shares from purchase quantity data.



grating out z,,,, in the choice probabilities when individual 7 is outside the micro-sample. We can
accommodate several forms of selection. In appendix A we show that for random sampling and
deterministic selection on choices y, ,,, (e.g., administrative data when outside good purchases
are not reported) no adjustments are needed. We further show how to accommodate selection

on demographics z;,,, .
3 Estimator

This section proposes the CLER estimator which combines the likelihood, E(@, 9), of the micro

and macro choice data and an efficient GMM objective function I1 based on (3),

(3,0,5) = argmin(—log (9, 5) + 11(8,9)) )
3,0,6

Notice that the likelihood is a function of (6, §) but not 3, whereas the product level moments
are functions of (3, ) but not 6. This separability has been noted previously in the literature, but
will play an important role in making our estimator computationally feasible. The following
two subsections describe the two terms of the objective function in detail. The first subsection
describes the mixed data likelihood, which alone is the objective function for the MDLE. The

second subsection introduces the product level moments term, 1.

3.1 Mixed Data Likelihood

The MDLE contains two parts relating to the micro and macro data. To understand its elements,

first suppose that we observed {y;,,, } forall N, observations. Then the loglikelihood would be, "

M Im Nm
m=1 j=0 =1

The loglikelihood sums over all N,, consumers in the market. If an observation ¢ is in the micro
data then we see z,,,, and can condition on it, whereas otherwise we integrate over the distribution
of z;,, conditional on this consumer not being in the consumer sample.

Of course, we do not directly observe the choices of consumers who are not in the micro
sample. However, the loglikelihood can be equivalently written in terms of the consumer level

observations and the market level share data,

10For expositional simplicity, we present notation for the cases of random selection or deterministic selection
ony,.,, into the micro sample. As discussed in appendix A, selection on demographics requires an adjustment to
account for samplingin 7 ,,, .
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'L'In

M Jm N,
IOgL 9 5 Z ZZ imYijm

1=1 j=0 =1 m=1

j777 lOg W]m ’ (7)

micro macro

where the first term is the contribution of the consumer level data and the second term is the
contribution of the market level data. In order to express the second term using observed market
shares, we add and subtract log 7 ,,, to control for the fact that the consumer level data represent
a subset of the consumers who make up the market. It is convenient to refer to the two terms of
the likelihood separately, so we define log L™ic and log L™ a5 the micro and macro terms of (7),
respectively. Alternatively, the estimator can be written by adjusting the macro term to avoid

double counting the consumers in the micro-sample:

[ JTVI NTVI ]\/[ JV?] N’IW
lOg L<97 6) = E Dimyijnl IOg 71.]77;;7 + E § : ( m jm E Dzmyz]’m> log Trjm’
m=1 j=0 =1 m=1 j=0
micro macro

(®)
These two formulations, while equivalent, emphasize different features of the estimator so we
will refer to the one that is most convenient at the time.

The MDLE recalls two common estimators in the discrete choice literature. When N,,, =
S,,—so that all consumers’ characteristics are observed—or when product market shares are
not observed, the likelihood simplifies to the well known mixed-logit likelihood. Indeed, identifi-
cation of (6, 0) using the log-likelihood alone follows from the arguments for identification in the
mixed-logit setting (Walker et al., 2007). However, when S,, = 0, so only aggregate data is avail-
able, maximizing the likelihood is equivalent to imposing the share constraint from BLP and
related estimators, as we show in section 6.2. This leads to a second insight: without consumer
level data, (0, 0) would not be identified by the likelihood alone as there are more parameters
than share constraints.

The MDLE objective makes full use of the consumer choice data (micro and macro). In
contrast to the traditional GMM estimator, there is no need to choose which moments of the data
to include in the objective function, nor to determine the weighting between moments. However,

it does not incorporate the product level exogeneity restrictions.

3.2 Product Level Moments

The CLER estimator combines the MDLE objective with an additional term that penalizes

violations of the product level moments,

11



f1(8,8) = 20" (8, 5)Wi(3,0) ©)

where for J = Zi{: L Imo JW is the optimal GMM weight matrix for m scaled to converge to the

inverse of V(b and

jmgjm)

M Im
M(6,8) = > b (0 — B ). (10)

m=1 j—
Note that, unlike in standalone GMM estimation, the factor 1/2 in front of the ‘J statistic’ in (9)
matters since it affects the relative weight placed on the likelihood versus the moment compo-
nents of the objective function: the choice 1/2 is optimal as shall become apparent in section 4.1.
If the dimension of bjm is the same as that of (3, a situation we shall refer to as “exact iden-
tification of 3” then 6, § are estimated off the likelihood portion and f3 off the GMM portion.
Our estimator is then equivalent to a two-step estimator which estimates 6, ) via MDLE and
subsequently estimates 3 off I1. Additional restrictions result in overidentification of S which
can be used to aid the estimation of 6. Indeed, then II will generally be positive so that both
log L and TI contribute to the estimation of 6, §. However, because the micro log likelihood sums
over S = ETZZ: | Sm terms whereas IT involves sums over J terms these additional product level

restrictions can be asymptotically negligible for 6, § as we discuss in section 4.1.

4 Properties

The CLER estimator combines two sources of information based on the model: consumer choice
decisions on the individual and aggregate level, and product level exogeneity restrictions. These
sources have identifying information for overlapping sets of parameters. Moreover, the empirical
content of these alternative sources will vary based on the shape of the dataset and the true
values of the parameters. In this section, we establish that our estimator is conformant in the
sense that it achieves the optimal convergence rate under multiple alternative divergence rates of
{N,,}, S, Jand exploitable variation in the data;'! moreover, it is efficient in all of these settings.
The conformance property implies that a researcher can be confident in using our estimator
without knowing or testing the precise conditions she is facing.

For clarity, we first informally argue in section 4.1 that our estimator is efficient without

making reference to its convergence rates.!? Section 4.2 then establishes the convergence rates

We use the term ‘conform’ instead of ‘adapt’ to avoid confusion with the adaptive estimation literature.
1275 we shall see, different elements may converge at different rates.
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of the estimator under a wide variety of circumstances, completing the efficiency argument.

Section 8 provides a valid inference procedure.

4.1 Efficiency

The CLER estimator is efficient under a wide range of circumstances. To see this, it is convenient

to first consider the gradient of the CLER objective function (5),

ngﬁTWfﬁ
—d,log L : (11)
—0;log L+ 8517§T7X71ﬁ

We first show asymptotic equivalence of a GMM estimator using this gradient to the GMM

estimator defined as

N S w0 m
argmin — [m 9,7 log L] . - (12)
o5 2 0 Wg| |9,logL

where ) = [07,6']" and W, = (=0, log i)_l evaluated at the solution ¢ of (5).13 Note
that in (12) there may be more moments than parameters. Specifically, (11) has dg + dy + d;s
moments, whereas (12) is based on d;, + d, + ds moments. Under exact identification of (12), i.e.
if d, = dg, both (11) and (12) are equal to zero if m = 0, J, log L =0,and 05 log L = 0. In the

case of overidentification, the gradient of the objective function in (12) is

8ﬁlﬁT Wi 0,4
B
Og, + | Oy log LW 0 log L | , (13)
dsm' W 05,7 log LW 0, log L

which yields (11) at the solution since W, = (=0, log f})_l, establishing the equivalence of
these estimators.

Next, we argue that (12) is efficient. First, by the law of iterated expectations, at the truth,
E (8¢ log L nET) =E ([E(aw log L | z,¢) rﬁT> =0,

where the second equality follows from the the likelihood principle applied to the choice problem

3We define W 5, in terms of (5) in case its gradient (11) is zero at multiple points.

13



(without product level moments); see appendix B for details. The intuition for this result follows
from the fact the inner expectation is over the consumer level shocks ¢, whereas ¢ does not enter
the product level moments. Moreover, —W 1, is the scaled inverse information matrix of the
choice problem and we assumed W is the appropriately scaled optimal weight matrix of the
product level moments. Therefore, this choice of weight matrix is optimal.

Despite their asymptotic equivalence, there are two reasons to prefer the CLER estimator
to the GMM estimators described in (11) and (12). First, the population analog of (11) can
have multiple solutions even if the population analog of our objective function (5) has a unique
optimum. For example, in the typical case where the v;,,, are independent standard normal draws
and 0" represents scale parameters, d,. log L = 0for any parameter vector where 6 = 0; setting
0¥ = 0, the remaining parameters can be chosen to satisfy the rest of the score, albeit that the
likelihood is then not optimized. The second reason is that computing (12) would be unwieldy
because of the high degree of nonlinearity and the dimension of 6. We show in section 7 that the

CLER estimator can be tractably computed despite the dimensionality of ¢.

4.2 Conformant convergence

We now show that the CLER estimator is conformant. The objective function in (5) is the sum of
three terms that diverge at different rates. The micro loglikelihood is the sum over S consumers,
the macro loglikelihood in (7) is the sum over N consumers, and Misa quadratic that diverges at
rate J. Moreover, as we illustrate in section 5, the identifying power of the micro data depends
on the value of 6. As a consequence, the rates of convergence of 6%, 0", § differ across cases
depending on S/.J and 6%. In contrast, the convergence rate of Bis always v/.J (assuming there
are at least d g strong product level moments) since it is only identified off IL.

The remainder of this section enumerates cases defined in terms of (relative) divergence
rates to which the CLER estimator conforms. Since the convergence rate of BA is always /.J we
focus on the convergence rates of 6, . We first make explicit the following assumptions, which
we maintain throughout. First, the market size /V,,, in any given market m diverges faster than
the total number of products across all markets, J, i.e. min,, N,,,/J — oco. This is to ensure
that market shares can be consistently estimated. This assumption is weaker than assuming
N, = oosince N,, need not diverge faster than S and we have not specified how much faster
than J. In addition, we assume that the J,,’s are fixed and that lim,, , max , J,, < co. This

ensures that the choice probabilities in each market are constant as the data grows and that
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observed market shares vary only due to the addition of consumers (i.e., as N, grows).'* For
exposition, we will further assume that the instruments b,,,, used in 2 are strong in the standard
sense (Staiger and Stock, 1997) and there are enough moments to ensure identification. If b,,,,
were weak then identification of , § can still come from consumer level data.

To build intuition and connect our convergence results to the previous literature, note that
the one-to-one mapping between shares and 6,,, as a function of 6 (Berry, 1994), can be estimated
atrate \/N,, because we assume that J,, is finite. To see this, first note that the (macro) shares
converge at rate \/N, . Thus, for given 6, the convergence rate of an estimator gm (0)ofd,,(0)
using share data alone, would converge at rate \/N_m . Micro variation does not improve the
convergence rate of 5m (0) for a given 0 because we still only have N, , observations from market
m. The convergence rate of the estimator 5m of the parameter §,, can be slower than /N,
since # must also be estimated. Indeed, Sm -6, = Sm () — 6., (8) so the convergence rate of
5m is the slower of \/N,,, and the convergence rate of f. For ease of exposition, we assume in
the remainder of this subsection that S diverges no faster than V,,. If this assumption is not
satisfied then some of the v/S rates will slow to \/N_m . Section 4.3 will relax this assumption.

We begin with the simpler cases in which the ratio S/.J is allowed to vary for given values
of the model parameters. It turns out that if #* = 0 then the micro data alone is insufficient
to distinguish (0¥, ¢), which affects convergence rates. In section 4.2.2 we then cover cases in
which 67 is allowed to drift in the spirit of the weak identification literature. These cases are
critical since ex ante the researcher does not know the value of 6*: if 8% were close to zero then it

is unclear which fixed case (if either) is appropriate.

contributing
rate term(s)
case 0 6v,6 for0* for6”
S/J—00,0°4+0 S S logL logL
S/J—00,07=0 S J logL I

S/J—=ec,0°+0 +J +/J both both
S/J—=e¢,0°=0 +J +J both I

~

S/J—0 VI VI II

Table 1: Convergence rates of the proposed estimator and terms contributing to the limit distribution
in addition to the macro likelihood when 6~ is fixed and there are sufficiently many momentsin 11
to ensure identification (where needed).

14This is in contrast to BLiP04 which assumes that the number of markets is fixed.
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4.2.1 67isfixed. Table 1 lists several cases where the parameters are fixed ordered by impor-
tance of the log L™ term for the asymptotic behavior of (5).

In the first two rows, the size of the micro sample S diverges faster than the number of
products J, which we view as the typical case. Then the log L term of our objective function
diverges faster than IL. If 67 # 0, then the likelihood provides identification and yields an
efficient estimator of (6, §). So the addition of IT is then asymptotically irrelevant for (6, §).!> Of
course, using log L alone, we would be unable to recover 5. However, a two step estimator in
which 6, § are estimated off log L in the first stage and 3 is estimated by minimizing I1(3, 5 )in
the second stage, is equivalent to our estimator (and hence also efficient). This holds even in the
case of overidentification in II since the additional moments do not alter the fact that II diverges
at the slower rate J.

However, if % = 0 (the second row) then log L fails to identify all the parameters. In this case,
utilities and choice probabilities do not vary with demographics z (as we illustrate in section 5).
Thus, the 6” and § scores of the micro likelihood are collinear. Indeed, if 6* = 0 then s,,,, (2, v) is
flatin z and the scores with respect to #” and ¢ depend on the micro data through Zfi"{ D, Yiim
only.!® Asaresult, #” and § are not identified off log L. In this case, I provides identification as
we have assumed the moments are sufficient to identify 6”. Consequently, the convergence rate
of #” and d slows to V/J. In contrast, 67 is still identified by the micro likelihood because the score
with respect to 6% depends on Zi\i’l D, Yiim#zim When s, isflatin z, so the rate of 67 continues
tobe v/S.

We now move to the cases where S/.J converges to a nonzero constant. Here, the micro term
log L™ic of the loglikelihood and I diverge at the same rate, and all parameter estimates converge
at the same rate \/.J ~ v/S. However, our estimator is still more efficient than alternatives since
it combines both terms optimally. There remains a distinction when 62 = 0 since again log L has
no identifying demographic variation to pin down 6" and so only I1 contributes to the limiting
distribution for this parameter.

Finally, we consider the case where S/.J — 0. Now I diverges faster than the micro loglike-

lihood log Lmic, Consequently, if d;, > dg + d, then I will deliver the asymptotics. However, if
dg+dgo < dy, < dg+ dgo + dy- and S diverges then the micro likelihood will contribute to the

15We implicitly assume sufficient variation in z to identify all random coefficients; there can be intermediate
cases. See the discussion at the end of section 5.
18The scores of log L™ with respect to 6% and ¥ are in (20) and (22). The score with respect to § jm 18

SN S D Yiem | o) S 3m Zims V) (1 = ) = 300 (21 v) ) AF(0),
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limit distribution and the convergence rate will be /S instead of the /.Jrate displayed in the
table. An extreme example of this case arises when S' = 0, so log L™ic — (, This is the environ-
ment of BLP95 and both estimators are equally efficient under the assumptions of this section,
albeit that ours would be more efficient if min,,, N,, /J-4oc because ours does not impose the

share constraint; see section 6.2.

contributing
rate term(s)
case 0 0v.6 forH* for6”

VSN2/J = 00,8/J =00 VS VSA2 logL logL
VN ]T = ¢, S)] oo VS VJ logL both
VO[T —=0,5/J w00 VS VI logL I

VSN2 /T = ¢, S)J—¢c  /J +J both both
VSN2 /J—=0,8/J —c  VJ VJ both I

~

VSN2 /T = 0,8/ =0 VI VI 11 11

Table 2: Convergence rates of the proposed estimator and terms contributing to the limit distribution
in addition to the macro likelihood when 6% can drift and there are sufficiently many moments in I1
to ensure identification (where needed).

4.2.2 0% candrift. Insection 4.2.1 there is a discontinuity in the asymptotic behavior of the
CLER estimator between the #* = 0 and 6* # 0 cases. In order to address this discontinuity, we
now extend our discussion by allowing 6% to drift, i.e. to depend on S, J.17 We denote the drifting
rate by A\, so A = |#7||. Table 2 summarizes these cases, which are again ordered in decreasing
importance of the micro likelihood for asymptotic behavior of (5).

In the first row in table 2, \/mf — oo which is equivalent to the first row of table 1 in
terms of asymptotic behavior. In the next two cases, log [mic diverges faster than fI, but the two
cases differ in the strength of identification they provide due to A — 0 at different rates. The
knife edge case where the rate of ) is such that \/m] goes to a constant has no analog in
table 1. Here both log L™ and IT contribute to the limit distribution of 6 because the faster
divergence of log Lmic jg just offset by the convergence of A\. The case where \/m] — 0is
effectively equivalent to the second case of table 1 where #* = 0. The final three cases all have

direct analogs in the final three rows of table 1.
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leading case (S/J — o0, 0% # 0)

~

Estimation method 0 0> o B

CLER: —log L + II min(v/S, /N,,) VS & o
MDLE: — log L, then I min(v/S, \/N,,) V'S V'S VJ

Rely on IT to identify 6 Vi VE Vi VJ

more general case: (S/J — 00, 0% ~ \)

Estimation method 5 6 ov ,@

CLER: —log L + II min{max(v'J, VSA?),\/N,,} VS max(vJ,VS\?) VJ
MDLE: — log L, then II min{vS\, /N, } VE V52 min(v/SA2, /J)
Rely on II to identify 6” V. V'S Vi VI

Table 3: Rates of convergence with product level moments if d,, > d + dgy.
4.3 Summary

What the above discussion has illustrated is that it is optimal to rely on the variation in the
micro data alone to identify 6%, 0¥, § if the micro sample is large and demographic variation
affects choice probabilities substantially. Otherwise, I1 becomes useful. Both our estimation and
inference procedures automatically conform so that one does not have to test which situation
oneisin.

Table 3 summarizes these ideas. We compare the CLER estimator to two alternatives under
the maintained assumptions that S/J — oo and that the overidentifying moments in II are
sufficient to identify 6" (which requires d, > d + dy.).

First consider the leading case where 6 # 0 is fixed. We have already described the behavior
of our estimator in table 1. The first alternative in table 3 is the MDLE two-step estimator
described in section 4.2.1, which in this case is asymptotically equivalent to our method. The
second alternative, relying on m rather than the micro sample to provide identification for 6”
would occur if one dropped the #* gradients from (12), which had d, + dy-. + dy. + ds moments
fordgs + dy- + dg. + ds parameters. Doing so slows down the convergence rate to VJfor, 6.

We now generalize to the case in which 67 is drifting toward zero at rate ), a case that was first
discussed in section 4.2.2. For the CLER estimator, the rate A determines which of the first three
rows in table 2 applies. The MDLE two-step, on the other hand, could do poorly if A converges to
zero fast. In the extreme, i.e. if 6% = 0, this estimator is inconsistent. An estimator relying on m

to estimate 6" is not affected by the fact that the likelihood provides less information than in the

17We can also let o e the standard deviation of £ jm drift, which alters the explanatory power of I1 instead of that
of log L. We believe that the 67 close to zero case is of greater concern in applied work than o close to zero.
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leading case, because it was not using that information anyway. The CLER estimator uses both
sources of information and hence converges at the faster rate of the two alternative estimators,

which can nevertheless be slower than in the leading case.

5 Identifying unobserved heterogeneity from micro data

Above, we highlighted that the micro likelihood can efficiently use the information in the micro
sample to estimate consumer heterogeneity parameters §. We now turn to a specific example to
illustrate the underlying variation in the micro sample that provides identification.

Consider a simple case of a single market with two products and an outside good. There is a
single demographic variable, so z; is a scalar.'® Utility for product j is

ulj - 69 + ezxg-l)zi + euxg-Z)l/i + ‘Sz‘jv

where the product characteristicsare z1) = [1 0]", 2 =[1 1]'.The demographic variable
shifts utility of good 1 only, and the single random coefficient induces correlation in the utilities
of the two inside goods. As s typical, in this example v, has a standard normal distribution.
Suppose we observe a random sample of microdata {y, , z, }. The micro data nonparametri-
cally identifies the function 7* = Pr(y;. = 1| z, z). Figure 1 plots this function over z € [—1, 1]
for three different parametrization of the model, namely §* = {0,1, 2} with § = (—.25,25)"
and 6% = 2. Intuitively, the share of good 1 rises with z in all three panels. However, the slope
differs based on the value of #”. The other notable difference is that as #” increases, z has a larger
impact on the share of good 2, 75, relative to the outside good, 7. Since the utilities of goods 1
and 2 are increasingly correlated as 6" grows, it becomes more likely that consumers are on the
margin between the two inside goods than between good 1 and the outside good. Therefore, a
slight increase in z induces relatively more substitution away from good 2 than the outside good.
We can also nonparametrically identify the derivatives of 77. Given our special case we have,
d, 7% = 670, w7, where we employ the fact that z only affects the utility of good 1. Taking a ratio
of these gives us diversion with respect to utility from good 1 to good 2 and from good 1 to the

outside good for every value of z, i.e., for j = {0, 2},

=~z z
& _ 9T pe (14)
d, 7 9,77 1

18Since there is a single market in this section, we drop m from the notation.
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Figure 1: Conditional shares 7w are identified by the micro sample.
Equation (14) provides intuitive variation with which to identify 6”. To see this, recall that when
0¥ = 0 then we have multinomial logit demand. This implies that diversion is a function of
conditional choice probabilities: if 8 = 0 then Df; = 77/(1 — m{). Moreover, due to the
independence of irrelevant alternatives property, diversion will be constant over z.

Figure 2 illustrates the implications of diversion for different #”. The first panel depicts
diversion with respect to utility from good 1 to good 2 as a function of z, i.e. D7,. As predicted,
diversion is constant in z for #” = 0, yet it is decreasing for #” > 0. The reason for the decline can
be seen in figure 1: as z increases, the conditional share of good 2 falls more rapidly for 6 > 0, so
a larger proportion of switchers must come from the outside good in response to an increase in z.

The second panel of figure 2 plots the logit-implied diversion ratios computed from condi-
tional shares generated by the three parameterizations of 6”. If #* = 0, we exactly reproduce
the constant diversion rate from the first panel. For 8~ > 0, we see decreasing functions that
are below the line for # = 0. The reason these functions are decreasing is the same as for the
first panel. The reason the level of the logit-predicted diversion decreases in 6" is that diversion
between goods 1 and 2 is more than proportional to shares when 6 > 0. An illustration of di-
version between good 1 and the outside good would produce a mirror image since increasing 6
weakens diversion between these goods.

The third panel of figure 2 takes the difference of the first two panels. As 6" rises, the logit
model under-predicts diversion between the two inside goods. Moreover, the degree of under-
prediction varies in z. This suggests moments with which to identify 6” by comparing the esti-
mated diversion rate to the model-predicted diversion rate. In this exercise we have fixed the
values of the other parameters 6% and d. In practice, the described moments for ” would need to
be paired with commonly used moments to identify 67, §; e.g., matching market shares for ) and

matching correlations between demographics and product characteristics for . An advantage
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Figure 2: Diversion and Demographics
of the likelihood approach to using moments is that it fully exploits all of the information in the
micro sample.

So far we have focused on a special case in which it is clear that the micro sample has so much
valuable information to identify 6" that the I1 term of our estimator would be redundant. To see
a case where I1 is necessary for identification, simply set #* = 0 in our example. Now 9,7% = 0
and the moments we have suggested are undefined and no longer informative.

In our example, we specified z to shift the utility of exactly one good and restricted 6 to
have dimension one. There are more general conditions for identification of 8 from consumer
demogrpahics. 1 is typically specified as a linear combination of interactions between product

characteristics and consumer demographics, e.g.,
.07 — T _ k,d) .k d
Wz, 2;07) = 2; 0%z, = g E 0= )szw
k d

where ©7 is a matrix with elements 6%(%:4), With this form we have,

J
A7 =YY ¢*kdaky, xz. (15)
k=1 ¢=1
In matrix notation, (15) can be written as
d 7% = 8,770 ru= 0,770 p* = 9 +7° X O, (16)

Thus, only if X T©®% has maximum column rank, does there exist a unique 0, 7* that solves (16).
In other words, if this rank condition holds, then we can recover the substitution matrix for all
zfrom 6% and the data. Flexibility of the substitution matrix is the primary motivation for the

introduction of random coefficients. Since the introduction of §” imposes parametric structure,
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nonparametric identification of the full substitution matrix is sufficient to identify 6”.

The most general specification of 1 would let x be product dummies. Then, if v were dis-
tributed mean zero normal such that 6 would be J(.J + 1)/2-dimensional (J variances and
J(J—1)/2 correlations), one would have the same number of unknowns as there are restrictions
in (16). Applied work typically imposes restrictions to reduce the dimension of #” by introduc-
ing random coefficients on product characteristics instead of on products and restricting v; to be
independent across its elements. If the rank condition on X Te* fails, we still have restrictions

like (16) that may pin down some or all elements of §” depending on the specification of p”.

6 Comparison with Alternative Estimators

To clarify the contribution of the CLER estimator, we now relate it to other estimators used in
the discrete choice literature.

First, as noted above, with S = NV, log L simplifies to the mixed logit loglikelihood. If S’ <
N, the only difference is that log L exploits the market share data via the macro term. This is
particularly useful when Jis large relative to .S, since then there would otherwise be an incidental
parameters problem in estimating §. More generally, market share data can dramatically improve
the precision of the estimator, as illustrated in fig. 3 of Grieco et al. (2022).

The other major class of estimators used in applied work consists of share constrained GMM
estimators (e.g., BLP04; Petrin 2002; Grieco et al. 2023).Y The remainder of this section shows
how the CLER estimator can be converted into members of this class of estimators. Since the
CLER estimator is efficient, so we will point out losses of efficiency along the way. There may
be a trade-off between efficiency and computational tractability that justifies using an ineffi-
cient estimator. We also discuss these trade-offs. One should keep in mind that computational
resources tends to be less costly than data. We argue for the computational tractability of the
CLER estimator in section 7.

Figure 3 provides a summary of the steps. The highest node in the tree represents the CLER
estimator. Each node below represents an alteration to arrive at an alternative estimator. The
large pink box representing section 6.3 proposes three alternative alterations for linearizing the

score with respect to 8 as described in section 6.3.2. One can stop the process at any node in the

Y An alternative class of share constrained micro likelihood estimators (e.g., Goolsbee and Petrin, 2004; Chin-
tagunta and Dube, 2005; Train and Winston, 2007; Goeree, 2008; Bachmann et al., 2019) also derives from our
estimator by only imposing share constraints on our estimator without recasting it as a GMM problem as described
by the dotted line in Figure 3.
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tree, so in total the figure describes nine alternative estimators (including share constrained like-
lihood, see footnote 19). At each node, we briefly list the primary costs (red) and benefits (green)
of the step relating to econometric efficiency (), inference (88D), computational tractability
(&), data requirements ($$) and experience in applied work (?7?). Each step downward in
the tree leads to an estimator that is weakly less efficient than its parent. To our knowledge, all

estimators that have been applied in empirical work on discrete choice demand are covered here.

6.1 Step1l: A GMM version of our estimator

In section 4.1, we presented a GMM estimator (12) which is asymptotically equivalent to our
estimator, assuming that (12) does not lose identification; as we pointed out in section 4.1. Going
from minimizing the objective function (5) to setting its derivatives to zero can lose identification
due to the existence of multiple (local) optima.

For equivalence to obtain, it is essential that the w 7 and W matrices used in (12) have the
norming indicated in section 4.1: unlike in standard GMM the convergence rate of the GMM
estimator can be affected by a poor choice of weight matrix. The reason for this is that one set of
moments entails a sum over consumers whereas the other is a sum over products.

GMM estimators are often used to avoid parametric distributional assumptions, however this
rationale does not apply in this case. Indeed, GMM estimators discussed in this paper also use the
distributional assumptions on v, € for the moments, and Ilin (5) similarly avoids distributional
assumptions on €.

Our estimator has an important computational advantage over (12): its objective function is
approximately convex in ¢. Since ¢ is high-dimensional this convexity is important. In fact, the

next step is driven by addressing the computational complexity introduced here.

6.2 Step 2: Imposing share constraints

To resolve the dimensionality issue in (12) one can impose share constraints m = s.2° Following
the intuition of Berry (1994) this is equivalent to treating J as a deterministic function of 6 and
yields a consistent estimatoras V,,,, S, J — oo.

Three issues arise when imposing the share constraint. First, because it is a one to one
mapping on the interior of the probability simplex, doing so rules out the presence of zero
shares. While this is reasonable for conditional choice probabilities, applied cases have arisen

where zero shares are observed in data. By optimizing the CLER objective rather than enforcing

20Share constraints can also be imposed on log L directly, see footnote 19.
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Figure 3: Schematic comparison of our estimator to alternatives. See text for details.
that unconditional choice probabilities equal market shares, the CLER estimator offers some
robustness to zero or small shares in the data.
Second, and more importantly, imposing the share constraints introduce a potential loss of

efficiency. Suppose that 6 + 0 such that the MDLE and the CLER estimator are asymptotically
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equivalent. Then this efficiency loss occurs unless the population in the smallest market diverges
faster than the total number of consumers in the micro sample across all markets .S and the total
number of products J. Lemma 1 establishes this result for the single market case.

Third, and most importantly, using the assumption s = 7 in inference, also, can produce
incorrect inference unless the total number of consumers in all markets is negligible compared
to the square root of the population in the smallest market.

We start by demonstrating the potential efficiency loss.

Lemma 1. Suppose that there is a single market with a finite number of products Jand that
the micro sample consists of random draws from the population of size NV, each member of the
population being drawn with probability 0 < x5 — xas N — ocowith0 < x < 1. Then
imposing the share restriction cannot be more efficient and is generally less efficient than using
the MDLE (or CLER) estimator of ¢, 6. ]

The proof of this lemma follows immediately from the proofs of lemmas 2 and 3 in appendix C,
which formally derive the asymptotic variance of the MDLE (or CLER) estimator and the share
constrained likelihood estimator respectively.

There are two cases in which there is no loss of efficiency. The first is if x = 0, which should
in practical terms be interpreted as the size of the micro sample being negligible compared to the
size of the population. The second case is if the coefficients on the observable micro regressors, 67,
are all equal to zero. This case is not helpful since then there is no identification, so a comparison
of efficiency is moot. In practice, imposing the share constraint can lead to a substantial efficiency
loss as examples 1 and 2 in Grieco et al. (2022) illustrate.

For additional intution, consider the share constrained estimator as a GMM estimator with
infinite weight on a subset of moments. Specifically, suppose that one separates out the micro
and macro terms of log L as specified in (7) and considers the derivative of the macro term with

respecttod,i.e.forallm =1,..., Mandallj=1,...,J

r“m?

J,

m

2 [y ) (10 =) = 9 (2) ) dF () dG(2) = 0, 17)
£=0 m

where s was defined in (2). If s = 7, then the left hand side in (17) becomes

Im
/ajm(z, v)dF(v)dG(z) — /ajm(z, V) Zdém(27 v) dF (v)dG(z). (18)
{=0

—_————
=1
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So setting s = 7 solves (17). By Berry (1994), this solution is unique. Therefore, imposing share
constraints effectively places infinite weight on this moment. It is well known from standard
GMM theory that placing infinite weight on a subset of moments is generally inefficient. As
noted, in our setting, there would be an efficiency loss unless S and J were negligibly small
compared to IV, because then the macro score runs over more terms than the other moments.

In addition to the efficiency cost, imposing the share constraints also complicates inference.
If one treats ¢ as a deterministic function of #, one ignores the uncertainty arising from observed
market shares. This will result in a downward bias in the standard errors for 9. Indeed, for some
linear combinations of §, asymptotics are governed by the estimation error in market shares
unless S is negligibly small compared to min,,, \/N,,,.

To illustrate, consider inference on a linear combination of ¢.,,,. Imposing share constraints,

it would be tempting to use the delta method to conclude that for any vector v # 0,

\/gv—r (gm B 5m>
\/UTﬁeT Sm (5)098051;1 (é)U

4 N(0,1), (19)

where 5_m (0) is the share inversion for market m and V), is the asymptotic variance of f. This
ignores sampling error in the aggregate data, which becomes a problem for all vectors v for
which v’ 0y, = 0, where the left hand side of (19) diverges. The space of such vectors v is
of dimension no less than .J,, — d, > 0sinced,, : R% — R/m. Using the bootstrap the way
it is typically used does not solve this problem.?? We provide the correct asymptotic variance
formulas for the single market case in appendix C.2. Grieco et al. (2022) provides a numerical
example that shows that imposing the share constraint without adjusting the standard errors
can lead to standard errors being off by an arbitrarily large factor.

To summarize, inference using the CLER estimator can be done using standard extremum
estimation techniques. By contrast, the asymptotic variance for the share constrained estimator
should be based on the asymptotic variance formulas in appendix C.2 which are based on the

moments in (34), not on the more convenient formulas that obtain if /Vis set to co. This issue

ZIndeed, then by a Taylor expansion,

0 {0, (0) = 8. (6)} =~ 01 {5, (6) = 8., (0)} +0" 9y, (6) (6 — ) + % > v (0—6)19y75,,,(0)(6 - 0),
0,(1/y/N,,) =0 J 0,(1/8)

such that asymptotics are governed by the first right hand side term unless S/+/N,,, vanishes.
220ne would have to draw the bootstrap population from the superpopulation, which is impossible.
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extends to any estimator in which the share constraints are imposed to hold.

6.3 Step 3: Adjustments to Likelihood-based Moments

One motivation for using a GMM estimator is to apply the method of simulated moments (MSM)
rather than simulated maximum likelihood. With the MSM, the simulated moments have mean
zero at the truth, regardless of the number of simulation draws. Consequently, as Pakes and
Pollard (1989, PP89) have shown, the MSM estimator has a mean zero normal limit distribution
whose convergence rate is the square root of the slower of the fotal number of draws and the
number of observations. For example, if the number of draws per observation were fixed then the
total number of draws grows proportionally to the number of observations and the convergence
rate is the square root of the number of observations, albeit that the asymptotic variance would
then be greater. However, the derivatives of the simulated log L donothave mean zero at the truth
since they are nonlinear in the simulated integrals. Step 3 replaces the score of the likelihood
with approximations that are able to take advantage of the linearity property. This resultsin a
loss of efficiency in return for less computational cost for a given level of numerical (as opposed
to statistical) accuracy.

We can focus on the micro score because the macro score in (7) is equal to zero if observed
shares are equal to choice probabilities, which we imposed in section 6.2. We can ignore the
double counting discrepancy in the micro score between (7) and (8) because the micro score has
mean zero in both cases. So we will work with the micro score in (8).

6.3.1 Approximation of * moments for linear simulation error. We first consider the
micro score of (8) with respect to 8% i e.
>

m=1 1=1

N,, J J

m m y i
Z zm —imJigm /ij<zim7 V) (x?ngm - Z xlgmzzdmdﬁm(zim7 V>> dF<V>7 (20)
= =1

jm

which is a ratio of two integrals due to the presence of 7r ¢ in the denominator. A commonly
used approximation to the score can be found by setting v = 0 selectively as follows. Continuing

from (20), we have

i %szD S 3jm (Zim»> V) (xfmzfm — ZZ;"I 2k 28 S (Zims 1/)) dF(v)
m=1i=1 j=0 imYijm fdjm<zim7 v)dF (v)
98328t L) (2t = S 2ot o)) AP )
- m=1 i=1 j=0 im iz f"jm(zim» 0)dF(v)
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The final line of (21) matches the correlation of demographics and product characteristics in
the micro sample to that of the model. This moment is commonly used in applied work, see
CG23 for a list of examples.>* A convenient feature of this moment is that it is linear in wjn;“ ,
its only approximated object, so it can be approximated without simulation bias if one uses
Monte Carlo integration. However, since the share inversion is a nonlinear transformation of a
simulated object, the number of simulation draws required in the computation of 6(#), which is

an argument to 4., must diverge faster than S to avoid affecting efficiency and necessitating

jm>
a different inference procedure,? and at at least the same rate as S in order not to affect the
convergence rate.

6.3.2 Handling 6" moments. The micro score of (8) with respect to #(*) is similar to (20),

replacing z¢ with v/* in the integrand, i.e.

Y, s
E : E : E Dzmﬂzzjf,z /djm<zim7 V) (xégml/k - E :xlgmykdfm<zim7 V)) dF(V>7 (22)
m=1 i=1 j=0 jm =1

However, the above used approximation is not useful since the integral would simplify to zero.

There are at least three ways of dealing with this issue. The most common in the applied work
is to simply drop the score with respect to # and rely on product level moments for identification.
As discussed above, doing so may slow the rate of convergence of 6 from v/Sto \/J.

A second alternative employed by e.g. Berry et al. (2004a) and Grieco et al. (2023) is intro-
ducing second choice data based on surveys of consumer purchases to construct alternative
moments. The CLER estimator could accommodate second choice data efficiently by includ-
ing it directly in the likelihood. There are, however, two potential issues with second choice
data. First, surveys rely on consumer responses rather than revealed preference and can be sensi-
tive to selection issues due to low response rates. Perhaps more importantly, such data is often

prohibitively costly to obtain.

’Discretizing either z;,,, or z ;,,, will lead to two other popular classes of moments discussed by CG23 namely
Elz;mli € I(zj,,)]orElz ,, |3 € (2, )] for some sets of products or consumers defined by their characteristics or
demographics. The discretization may impose a further loss of information. Note that applied work often conditions
these moments on making an inside purchase; alternatively, one could define z,,, = 0 and use an unconditional
moment.

240therwise, there would be an extra term in the moment due to the error in simulating §(), i.e. there would be
one term with §(6) and one expansion term involving the difference between simulated and actual values of §(6).
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While we are unaware of its use in the literature, there is a third possibility that utilizes two

independent v draws per simulation r, as we now explain. First, note that* Z‘]mo 3jm (7 fmyk —
ZZ:o 3emTh VF) = 0, such that (22) can be expressed as
igm g
>33 DI [ i) (=S R ) AF )
m=1i=1 j=0 T im =0
because summing the integrand over j equals zero and 7r im i T = 1. Noting that the condi-

tional expectation of the last displayed equation given all z’s and z’s equals zero at the truth and
that the denominator only depends on z’s and z’s, we can remove the weighting in the denomi-
nator. Removing the denominator affects efficiency but still provides a valid moment. So we are

left with a sum over the product of two integrals, namely
M m
3353 D DA [ 1) (383 ) 4700,
m=1 i=1 j=

Thus, approximating the integrals with sums using independent Monte Carlo draws satisfies
the conditions of PP89. While utilizing this moment will result in an estimator with the same

convergence rates as our estimator, and so will satisfy conformance, it will not be efficient.

6.4 Step 4: Population statistics instead of micro data

One may further alter the moment described in section 6.3.1 by integrating (21) over z,

M I 1 N,,
ZZ( ZDzmymm ?m ;lm_/ Tim ]mz dG( )) (23)
1=\

This is the moment described in BLP04, eq. 8, and Gandhi and Nevo (2021, eq. 4.4).

There are two possible motivations using (23) over (21). The stronger is that it is less data
intensive in that it may be computed using only statistics of the micro data. For example, Sweeting
(2013) uses data from a survey conducted by a third party that reports averages at the market-
demographic level which correspond to the first term in the summand of (23). The second is that
the right hand side of (23) does not involve a sum over observed consumers. However, in view
of PP89, the total number of simulation draws needed is the same in both cases. To simulate
(21), we need only a finite number of simulation draws per consumer in order not to affect the

convergence rate, as long as all draws are independent, whereas for (23) one needs a number of

25We set z,,, = 0 without loss of generality.
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independent draws that is at least proportional to S.

However, using (23) over (21) has an additional efficiency cost. In particular, (23) does not
exploit the consumer level data in the second term because it does not condition on z;. Itis
straightforward to show that the variance of (23) weakly greater than (21). For ease of notation,

consider the single market case with z, zboth scalarsandletw, = Zj: o Di;y;;7;- The moments

JJ]
in (21) and (23) (if evaluated at the truth) have the same Jacobian in expectation. The variance
contribution for observation i using (23) equals

\/{w‘ — E(w; | D17X)} = EV(w; | D;, X) = EV(w; | z;, Dy, X) + [EV{[E(%‘ | 2;, Dy, X) ’ DmX}

(3

> EV(w; | 2, D;, X) = V{Wz‘ — E(w; | Zi’Di»X)},

which is the variance contribution of observation i in (21). These two facts combined with
the sandwich formula for the asymptotic variance of the GMM estimator imply that using (21)

dominates (23).

7 Computation

While the CLER estimator is of theoretical interest, it must also be computationally tractable
in order to be appropriate for applied use. This section discusses two critical computational
aspects of our estimator. First, the CLER estimator involves an optimization over § which is a
vector of length J. In modern datasets, the number of products across all markets can run into
the hundreds of thousands, posing a potential problem for nonlinear optimization. However,
there are a number of features of our optimization problem that simplify this task considerably.
Second, any estimator must numerically approximate integrals over demographics z and taste
shocks 1.%® As discussed above, the choice of integration method will impact that accuracy of

the estimator. We discuss several approaches in section 7.2.

7.1 Dimensionality

We now describe a feasible algorithm for the computation of the CLER estimator for which we

use Newton’s method with Trust Regions. Recall from (5) that our optimization problem is

(8,6,0) = argmin(—log L(6,6) + I1(5, 5)).
3,6,5

26The exception to this is the mixed logit, which only uses micro data and hence only integrates over v.

30



Like BLP95, we start by concentrating out 5 which leaves

0,5) = ar%r?in<—log 1(0,6) + ﬁ{B(a),a}). (24)
We then have two levels of optimization. In the inner optimization we compute § as a function
of 6, i.e. for each candidate value # we find a minimizer § (0). In the outer optimization we then
minimize over 6. This approach is similar to that in BLP95 with the important exception that the
inner loop objective is (5)—the same as the outer loop objective—rather than the share constraint
m™=S.

The high-dimensional problem is now confined to the inner loop. For BLP95, tractability
followed from the existence of a contraction mapping to compute m = s. For our problem, first
suppose that (5) is just identified. In this case, II{3(5), §} = 0 for all values of §, in which case
we only need to optimize log L in the inner loop. Conveniently, log Lis additively separable
across markets in J,,,, and is nearly globally concave in ¢ for fixed 6. So we can parallelize the
computation of 5‘m () market by market, and each computation is highly tractable.

The overidentified case is more complicated. To simplify exposition but without loss of
generality, we will take W in the definition of IT in (9) to be (B'B)~! where Bisa J x d, matrix

with rows b, the instruments introduced in (10). Unfortunately, IT is not additively separable

Jjm?

in .,,,. However, there are several convenient features which make the inner loop tractable.
The first such feature is that 3(0) is simply a linear IV estimator, ie. 3(§) =
(X' PpX) 1 X" Pgé, with P, = B(B' B)"B' an orthogonal projection matrix. Second, II is

quadratic in 0. Thus, writing #;, y = #PpX (X To,X) X9, (24) becomes
~ 1
—log L(6,6) + §5T (Pp— Py x)0 (25)

Third, (25) combines the computationally convenient likelihood with a convex term, so the
resulting objective can be optimized over J via Newton’s method. Fourth, barring collinearities
the matrix #p — %, _ x is a positive semidefinite matrix of rank d;, — d 5. Note that by the spectral
decomposition, P — P, can hence be expressed in the form KK Tforads x (d, — dg)
matrix K. This is convenient because X may include many exogenous regressors (eg., brand or
product—rather than product-market—dummies) which also appear in B. Such K is not unique
but all choices are equivalent: we derive an explicit form for KX in lemma 4 in appendix D.

We now turn to the primary complication of applying Newton’s method to optimize (25) over
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0 in the inner loop: computation of the inverse of the Hessian (with respect to ). Just storing a
Hessian in 100,000 parameters would take 80Gb of memory; the computational cost of taking the
inverse is cubic in ds and the result could be subject to substantial numerical error. Fortunately,
we do not need to store or directly invert the full Hessian of (25), H + KK T, where H is the
Hessian of — log L. Instead, we can compute the inverse Hessian exploiting the above-mentioned

features. The inverse of the Hessian of (25) can be written as
H'-H'WI+K " H 1K) 'K H !, (26)

where [ is the identity matrix.?’

Since log L is additively separable in the §.,’s, H is block diagonal, so H~! can be effi-
ciently computed and stored. To appreciate the importance of this feature, note that if one
has 1,000 markets with 100 inside goods in each market, the problem reduces from inverting a
full 100,000 by 100,000 matrix H + KK T to inverting a thousand 100 by 100 matrices, which
is both much less demanding computationally and reduces memory demand by a factor 1,000
(i.e., 100,0002 /(100% x 1,000)). This makes the optimization step of the inner loop practical for
many products.

The outer loop is over a low dimensional parameter vector, albeit computations of the deriva-
tives involves application of the chain rule to account for inner loop optimization. We have
verified that this procedure can be used successfully for problems with over 100,000 products
and millions of consumers.

An even more computationally convenient alternative. Although computation of the
CLER estimator is straightforward, there is an alternative that has the same conformance and
efficiency properties as CLER and can be computed even more easily.?® This estimator optimizes
the sum of the macro and micro loglikelihoods over § in the inner optimization (dropping the
product level moments), but then optimizes the CLER objective function over ¢ in the outer opti-

mization. Doing so avoids the need to compute (26) which permits the inner loop to be entirely

27To see this, note thatfor A = I + X' H 1K,

(H'—H WA 'K H Y)WHAKK ) =T+ H KK —H KA K —H'KAK H KK =
I+HYWAYI+K HIK)VK —H KA 'K —H KA 'K H KK =1.
=I

B0One reason to avoid implementing CLER directly is that there is usually no convenient way to pass the infor-
mation on the structure of the Hessian to packaged optimization routines. The Grumps package does provide this
functionality.
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parallelized by market. As we establish as an intermediate result of theorem 1, this estimator is
asymptotically equivalent to the CLER estimator, but potentially at a lower computational and
programming cost. Because of the presence of the product level moments term, the CLER esti-
mator has some robustness against low shares which the alternative does not inherit, but that is
not the focus of this paper. We have implemented both estimators as part of the Grumps package

using the name cheap to denote this alternative.

7.2 Numerical integration

As we have pointed out, the largest disadvantage of our estimator is that a computable version
relies on numerical integration which is costly since to avoid affecting the asymptotic behavior,
the numerical error must be negligible. However, as always, we can arbitrarily reduce the nu-
merical approximation error by incurring a higher computational cost. In contrast, the MSM
can achieve the same convergence rate by averaging over noisy approximations of these inte-
grals. But as mentioned section 6.3.1, numerical approximation of the share inversion adds an
additional source of complexity for estimators in our setting that enforce share constraints.

The CLER estimator evaluates two types of integrals, those over v (e.g., 7*) and those over
both v and z (e.g., 7). This distinction suggests different integration methods for each type.

Quadrature methods are well suited for micro integrals over v. The distribution of v is as-
sumed known and is usually a familiar and tractable one, often normal. Moreover, v is often
of small dimension, so the curse of dimensionality associated with tensor product quadrature
methods is less binding.?’

The integrals over both zand v are more difficult to compute. In addition to (z, ) being higher
dimensional than v, the distribution of z is usually informed by data and so less amenable to
quadrature methods (e.g., the distribution of income in the consumer population). On the other
hand, they are only computed for each product (J) rather than each product-consumer pair (J.5).
Given this, (quasi-)Monte Carlo methods with a high number of draws are appropriate, albeit
this requires the number of Monte Carlo draws to grow faster than the square of the prevailing
convergence rate, which is the same number as is needed for MSM not to lose efficiency.

We examine the sensitivity of CLER’s numerical performance to the number of nodes used

for numerical integration in section 9.

B1If vis of high dimension, sparse quadrature methods can be viable alternatives. The designed quadrature
approach of Bansal et al. (2021) may be particularly attractive as all nodes have positive weights.
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8 Inference

This section describes inference on functions of model parameters, including elasticities and
counterfactuals. As discussed above, the conformant property of the CLER estimator ensures
that it can be applied under a wide variety of conditions. This also applies to our inference
procedure. We first outline the intuition behind our approach to inference in section 8.1. We

then move to a formal statement of our assumptions and proof in section 8.2.

8.1 Intuition

In all cases, inference will be built upon the Hessian of the CLER objective function (5),

15} _35173TW8BT m 0 0 ngﬁTwaaT m

i 0 —0y-¢-7 log L —0p. 4.7 lOg L —0,.47 log L (27)
0v 0 —0puy-7 lOg L —0pugu7 lOg L —0Oyugr log L

5 05 WOy —0sp.rlog L —0gg,r log L 5! Wgrii — 057 log L |

The Hessian alone is sufficient since our estimator is efficient so the usual sandwich formula
collapses. As we will see below, the Hessian conforms to provide valid inference in each of the
cases described in section 4.2. Importantly, the researcher does not need to assume or determine
the rates of convergence of the estimator in her situation to conduct inference correctly.

First consider the leading case where S/J — oo and 6% # 0. In this case, the CLER estimator
is asymptotically equivalent to the MDLE two-step estimator that first estimates (6, §) and then
plugsin § to estimate 3. With the MDLE, the information matrix for 1) = (0", 6"]" is the Hessian
of —log L. Notice that this is the (1), 1) block of (27) with the exception of the d;m ' Waéma
term in the (9, 9) block. However, that term diverges at rate J and is dominated by —0;r log L.
Similarly, because Y converges faster than 3,the (B8, B) blockin (27)is all that matters for inference
on (. To see this, note that by the partitioned inverse formula, the (3, 3) block of the inverse of

(27)is
-1
(((5, B)block) — ((8, §) block) * ((4, §) block) ™" * ((4, ) block))
~ ~ ~ -~ ~ -1
= (aﬁnfwaﬁma — Oy Wsrin + (9 Wsrii — Ogsr log L)~ 85173TW8B7173) :

Again, since the loglikelihood dominates, the second term inside the outer inverse is asymp-

totically negligible, so the limiting distribution of Bis determined entirely by the product level
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moments.

Now consider the case where S/J — oo and #* = 0. As we show in lemma 5 in appendix E,
the score of the objective with respect to ¢)* = (6", §) becomes collinear, leading to a loss of rank
in the Hessian of log L. However, rank is preserved in (27) due to the presence of the product
level moments in the (8, §) block. As noted above, this affects the rate of convergence as IT will
enter the dominant term of the (1", ¢"') block of the inverse Hessian. However, the rate of 07 is
unaffected since the score with respect to 6* is not collinear and the dominant term of the (6%, 6%)

block of the inverse Hessian will be
R . - N1
— (aezezr log L — 0,.57log L (947 log L) ! Osq-7 log L) , (28)

as we show in lemma 7 in appendix E. Expression (28) converges at rate .S.

Now consider the case where S/J — 0. The clearest intuition comes form the extreme
case where S = 0 (i.e., BLP95). As we discussed in section 4.2.1, 6, § are not identified off the
likelihood alone since log L™i¢ = 0 and log L™a¢ js maximized for any 6 by choosing ¢ such that
7 = s as we have shown in section section 6.2.° Consequently, 0,y log L is then singular,
indeed of rank d;.3! However, analogous to the 0% = 0 case, the (1, ¢)) block in (27) has full rank
due to the product level moments entering the (d, §) block. Note that because here the micro
data is not available to pin down 6%, we need d,, > d + dj- + dj. to preserve identification rather
thand, > dg + dy. in the 6% = 0 case above. It can be shown that the dominant term of the (6, )
block of the inverse Hessian has the same form as the corresponding expression for the BLP95
estimator which is O, (J~!); see lemma 8 in appendix E. Returning to the case where S/J — 0
but some micro data exists, II will dominate log Lin the Hessian, and all parameters converge at
rate v/.J. However, for the same reasons as stated above, the Hessian remains invertible.

The remaining cases are merely combinations of the above logic. If S/.J converges to a non-
zero constant, both log L and II contribute to the limiting distribution and both are accounted for
in the Hessian with the appropriate weighting. If 6* — 0, the contribution of I to the limiting
distribution of #, § will be non-negligible but accounted for in the Hessian. To summarize, under
different scenarios the relative importance of log L and I varies. However, by using (27) for

inference, we include all relevant terms so that inference is valid across all these scenarios.

30Since log L™ integrates over z, we need not distinguish between = and 6" in this case.

31 For any given 6, there is a unique § that maximizes log L—or equivalently satisfies the share constraint (Berry,
1994)—so the degree of underidentification is dj,.
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A second complication is that § grows with J, so (27) is also growing. To address this, write
v=1[8",0",6"]". Recall from section 4.2 that we assume that lim,, , _ max,, .J,, < oc. The
following subsection provides an inference method for finite-dimensional linear combinations

of .
8.2 Formal Result

We conduct inference on A(y — 7,), where A is specified in theorem 1.3 The purpose of this
theorem is to demonstrate how the CLER estimator balances different sources of identification
and achieves conformance. The assumptions stated below are stronger than necessary and
the key result obtains under weaker conditions with a longer proof. We will discuss some of
the differences between what is covered by the assumptions and situations under which our

estimator works as they arise.

Assumption A (Sampling of markets). The markets in the sample, indexedbym =1, ..., M,
arei.i.d.. Market m has J,,, products, NV,,, consumers altogether, and S,,, consumers in the micro
sample. The N,, consumers are i.i.d. draws from a superpopulation for market m and the set of
S,,, micro consumers are probability x,,, € [0, 1] i.i.d. (without replacement) draws from the IV, ,

consumers comprising the population of market m. O]

Since market selection is random, so are { N,,,, X,,,, /,,, }. In addition, the distribution of IV,
varies with M and the distribution of x,,, can vary with M. We define N = Ei\f: N, 5 =
Zi\::l S,,andJ =ds = ZZ: | Jm- Asymptotics are in the number of markets (or equivalently,
products), population sizes, and possibly micro consumer samplessizes(via NV, ,, x,,,), as discussed
in assumption D. Note that for ease of notation thus far we have referred to limits in S'and J,

which under assumption D should be interpreted as limits in ME(N,,, x,,,) and M respectively.

m
Assumption B (Utility linear in parameters). p7,, and u7,, are for all m linear in 6%, 6 respec-

tively. ]

For convenience, we assume that the heterogeneity terms of utility, in addition to mean utility,

are linear in parameters. This could easily be relaxed.

Assumption C (Distribution of product characteristics). (a) Observed product characteristics

., have bounded support; (b) for some p, > 8, Eexp(p¢|E;,,,|) < oo. N

321n the formal results, a zero subscript denotes the truth.
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Assumption C ensures that the smallest product-level choice probability, min ; does

T .
J,m T gm?
not go to zero too fast as M grows. It is implicit in much of the literature, though it could be
relaxed. Condition (b) is a restriction on the tails of the distribution of &. It is trivially satisfied if

¢is assumed to have bounded support or is normally distributed.

Assumption D (Rates). (a) M — oo; (b) the distribution of J,, does not depend on M and
for some J < oo, P(1 < J,, < J) = 1; (¢)E(N,,x,,) = 1; (d) M?>Y/E(N,,x,,) =< 1and
E(1/N,,) < 1, where x = Ex,,,a < bmeansthata/b = O,(1) or O(1) and where =, <, - are
analogously defined. O

Condition (a) in assumption D deviates from BLiP04, where the number of markets is fixed
and the number of products increases, but is similar to what is assumed in Hong et al. (2021);
neither of these papers covers the case with consumer micro data. It is needed for consistent
estimation of 3, and, more generally, in the absence of or with poor micro consumer data.
Together with (b), (a) requires that the number of markets grows but the number of products per
market does not. These two conditions guarantee that .Jand M grow at the same rate.

Condition (c) requires the number of micro consumers S to grow with /. We make this
assumption for convenience; if this were not true then the only source of identification would be
the product level moments, which is covered by Hong et al. (2021). Finally, the first half of (d)
can be most easily understood if one considered the case in which NV, , x,,, were independent, in
which case it simplifies to M? < EN, ,i.e. the average market population size grows no slower
than the square of the number of markets. The second half of (d) says that all markets must grow

in population.

Assumption E (Parameter space). The true value 6 isan interior point of the compact parameter
space ©. Further, d,,,, is bounded away from the boundary of the parameter space A,, = {4,,, :
30 € © : 672°(0) = 6, }, where §512°(9) (formally defined in appendix F) is, for a given 6, the

maximizer of the macro term of the population likelihood in market m, log L' = [ log fzﬁfc.
O]

The definition of A, is explicitly specified because it depends on = and &, which are random
at the product level. The function 672°(6) is the Berry (1994) inversion, except that we invert
product choice probabilities rather than observed market shares, a distinction that is assumed to
be irrelevant in much of the literature. This assumption rules out parameter on the boundary

and associated asymptotic size issues analyzed by Ketz (2019).
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Let B,,, be the submatrix of the instrument matrix B corresponding to market m, let B denote

the sigma field generated by B, and let J be the sigma field generated by B, X, £, {N,,, }, {x,. }-

Assumption F (Product Level Restrictions). (a) The elements of £ are independent conditional
onB; (b)E(¢|B) = 0; (0)E(e€ | B) =I; (d)0 < E(B,,B,),/J,,) < o0 (e)E(B,, X, /J, ) has
rankd, < dy; (F) miny o o T{05%(0)} = Me*;and Ay (9,652 (00) KK ' 9652 (6,)) =
M. H

Assumption F contains a number of conditions that are implicitly made in the literature.
First, (a) and (b) are standard, though (a) can be relaxed at the expense of longer proofs. The
extension is not theoretically interesting, so we do not pursue it here. Condition (c) may look
strong, but heteroskedasticity and some dependence can be accommodated by redefining the
objective function and the same goes for scaling. The only caveat there is that the optimal
weight matrix can depend on unknown coefficients which would have to be estimated in a two
step procedure; the same goes for the scaling parameter. That adjustment is routine and not
considered here. Condition (d)isstandard and says that there isno collinearity in the instruments.
In the proofs, we will take B' Btobe invertible, which is not implied by (d), but is true with
probability approaching one.** Condition (e) is a standard rank condition.

Condition (f) assumes strong identification off the product level moments. This allows us
to highlight the role of the micro likelihood for identification without undue notation. Condi-
tion (f) can fail for three reasons. First, if the product level moments just identify 3 (e.g., d, = d,,),
the IT term of our estimator can be set to 0 for any (6, ) and so does not contribute to the estima-
tion of (6, J,). Consequently, the asymptotics of our estimator are then covered under standard
maximum likelihood theory, albeit that the dimension of § increases. The case of weak product
level instruments is similar.>* Finally, it is possible that the number of strong moments overi-
dentifies 5 but is insufficient to also identify 6 (e.g., d, < d;, < d,, + dy). In this case, the rates of
convergence would depend on the relative divergence rates of SA? and M and also on the linear
combination of the parameters that is being estimated. The statement of theorem 1 is valid for
all three cases, although covering each case would necessitate a longer proof.

Recall that A is the weak micro identification parameter, i.e. the rate at which 6 converges to

3This comment addresses the immaterial technical issue that in the presence of discrete variables B'Bis
singular with positive probability, as is well-known.

34We are using the standard definition of weak instruments here, in which the first stage coefficients decrease to
zero at rate 1/v/M. Then, it can be shown that our procedure reduces to maximum likelihood if A >~ v/M//Nx
and otherwise is inconsistent.

38



zero; A = 1 in the case of strong micro identification.

Assumption G (Microidentification). Let A = HZ: LA and [[0—060]% = 07 —05]* +2*[6” —

0%|2. Then, £M(0, 6
0|| en inf n# =1,
0c0:16—0,]5>0 seA Nx |60 — 6,2

where £™¢(0,§) = log L™(6,,5,) — log L™<(, §) is minus the centered micro term of the

population likelihood and is formally defined in appendix F. O]

Assumption G assumes that variation in the micro data is sufficient to identify 6;. It allows
for no, weak, or strong identification of 6 based on the value of A\, which is fixed in the case
of strong identification, drifting to zero for weak micro identification, and zero for lack of mi-
cro identification. It can be justified by a second order Taylor expansion of each £™ around
(605 Oorm )-

Although the number of unknown coefficients increases (the number of §’s increases), it only
does so as more markets are added. In other words, (subject to identification) one could estimate
0 off finitely many markets with an increasing number of consumers in the micro sample. The
problem is hence inherently different from that in the seminonparametric estimation literature

in which there are infinitely many parameters from the outset.

Theorem 1. Let { A} be a sequence of nonrandomd, x (dg + dg + J) matrices for which AAT

converges to a positive definite d, x d, matrix. Under assumptions A to G,
~ d
(AVAT)H2A (5 — ) = N(0, 1), (29)

where 7 is the CLER estimator and Vis the inverse of (27). O

The sequence of matrices { A} is specified such that inference is conducted on a finite dimen-
sional vector of linear combinations of . This assumption will cover traditional counterfactual
analysis (e.g., merger simulation of observed markets). Appendix F contains the proof with
supporting lemmas and an informal outline of the intuition.

While the elements of A(5 — ~,,) converge at different rates and these rates themselves will
depend on the identifying variation, (AIA/AT)*U 2 scales this vector such that the product always
converges to a standard normal and can be used to conduct inference without explicit knowledge
of the rates.

To conduct inference on finite-dimensional nonlinear functions of y one can apply the delta
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method. This enables the researcher to conduct inference on arbitrary differentiable functions

of the model parameters, such as elasticities, pass-through rates, or counterfactual outcomes.

9 Monte Carlo Experiments

This section presents Monte Carlo simulations across a number of different settings to investi-
gate the performance of our estimator relative to alternatives. We will vary (a) the amount of
micro data available, (b) the degree of heterogeneity in utility due to demographics and unob-
served tastes, (c) the strength of the product level instruments, (d) the accuracy of the numerical
approximation of the log likelihood in our preferred estimator. Varying these settings affects
the relative power of the micro observations and product level exclusion restrictions for estima-
tion of the random coefficients #”, which affects the precision of all parameters of the model.*
Throughout, we will compare the CLER estimator, which efficiently utilizes both these sources

of identification, with estimators that emphasize only one.

9.1 Design and Estimators

Our baseline empirical design includes two observable and exogenous product characteristics

1

. L 22

(], 25,,), With associated parameters (3, , 3,); two demographic characteristics (z;,,,, 25,
interacted with a single corresponding product characteristic with associated parameters (67, 653);
and two random coefficients (67, 0%).

For each specification, we draw data for 50 markets with varying and independent numbers
of products, with the median market having 20 products. There are 100, 000 consumers (XV,,,)
in each market and we vary the size of the micro dataset, with S,, = 1,000 the baseline. In
the baseline specification, average share is roughly 2.1%, and the tenth percentile of shares is
roughly 0.06%. Full details of the monte carlo design are presented in appendix G.

We compare three different estimators. First, we consider the CLER estimator, (5). Along
with product characteristics, we include differentiation instruments in II following GH20, so
the II is overidentified for § and are potentially useful to identify . Second, we consider the
GMM estimator with the share constraint described in section section 6.3. This is a common
approach used in the applied literature and we implement it using the pyblp package, version

0.13 (Conlon and Gortmaker, 2020, 2023). Lastly, we implement the MDLE two-step estimator

35We also ran an experiment where we varied the amount of variation in consumer demographics across markets.
Both CLER and GMM perform better with more cross-market variation, although CLER always outperforms GMM.
Results of this experiment are available from the authors.
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that first estimates (6, §) by minimizing log L, and then estimates 3 by minimizing I1(, 5 ). In
this two-step procedure, product level moment restrictions are not used in the estimation of 6;
the same set of moments as above are used to recover £.

All three estimators must integrate over both v and 2 to compute 7; we implement this
integration using Monte Carlo simulation with 10, 000 consumer draws. The two likelihood
estimators must also compute 7%= for each observation in the consumer sample. We use 11-
point Gaussian quadrature in both dimensions of v, but evaluate this choice in Section 9.2.4.

For all experiments, we estimate the model for each of 500 draws of the data generating
process and present the plots of estimated parameter values across these draws. For CLER and
MDLE we use a single, arbitrary, starting point. For GMM, which is known to have local optima,
we multi-start from three values, including the truth.

To summarize, while the GMM estimator utilizes product level moments for the identification
of #”, it fails to incorporate all the information in the likelihood of the consumer sample. The
two-step estimator does the opposite: fully utilizing micro data for the estimation of #” while not
leveraging the information in the product level moments. The CLER estimator fully exploits all

available information from the data.

9.2 Results

9.2.1 Varying the size of the consumer sample. The first experiment varies the size of the
consumer sample for the baseline data generating process. Increasing .S,, should improve the
precision of all estimators. However, for the GMM estimator the benefit comes only from greater
precision in the estimation of the demographic micro-moment, whereas the MDLE two-step
and CLER estimators fully exploit the consumer data via the micro-likelihood. Figure 4 presents
results for this experiment. Each plot compares the distribution of the three estimators for a
specific consumer sample size (rows) and a given parameter (columns). The CLER estimator is a
solid blue line, the GMM procedure is a dashed green line, the MDLE two-step procedure is a
dotted black line.

Visually, it is clear that our method dominates both the GMM procedure and the MDLE
two-stepwhen S,,, = 250 for 7. At this small micro-sample size, CLER and the GMM procedure
perform similarly for #” and 3, outperforming MDLE, which does not utilize product level
moments when estimating ¢ instead relying exclusively on the small micro-sample. As S,,

increases, there is significant improvement in the precision of both 67 and 6" for CLER and
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Figure 4: Distribution of parameters for different sizes of consumer sample.
the MDLE, both of which utilize the score of the likelihood with respect to 6”. In contrast, the
GMM estimator has a smaller improvement as S,,, increases, even though the micro-moment
matching the covariance between demographics and purchased product characteristics is more
precisely measured. At .S,, = 4,000 the MDLE and the CLER estimator almost coincide. They
outperform the GMM estimator, particularly for 6. CLER and MDLE perform similarly when
S, is high because the information on ¢ from the likelihood dominates that of the product level
moments for micro-samples of this size (in our baseline parameterization).
9.2.2 Varying consumer heterogeneity. We next consider the estimators’ performance for
different parameterizations of § while fixing S,,, = 1000. The goal of this exercise is to illustrate
the estimators’ performance as we change the relative power of the two sources of identifying
variation for 6”.

As discussed in section 5, the identifying power of the consumer sample for #* becomes weak
as 6% — 0. Intuitively, if changes in observable demographics do not substantially vary utility
across products, then comparisons between consumers are not useful in measuring substitu-
tion. On the other hand, the product level moments will have identifying power only when the
overidentifying instruments are strong in the sense of GH20.

We focus on the distribution of the estimates of the random coefficients, 6. Figure 5 plots the
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).3¢ For reference,

distribution of é{ across three estimators as we vary 6* (rows) and 6~ (columns
the central plot in this image is the baseline data generating process, which is also the DGP in
the central row of Figure 4 where S,, = 1000. First, note the poor performance of the MDLE
two-step for small values of 6~ (first column), where the identifying variation in the consumer
sample is relatively weak. In contrast, the GMM and CLER estimators perform similarly when 6~
is small. Both rely on the variation from the product level moments that compose I to estimate
0”. While CLER also incorporates information from the micro sample, this is negligible when 6~
is small.

There are also cases where GMM performs poorly but the MDLE two-step is comparable to
the CLER estimator. In particular, this occurs when 6~ is large relative to 8. For some intuition,
note that the differentiation IVs on which the GMM estimator relies are a function of distance in
characteristic space to other products and do not directly incorporate consumer demographics.
Roughly, these moments target both 6 and 67, and rely on the demographic micro-moment to
distinguish the two. This will be more difficult when 6" is large, which effectively adds noise to
the micro-moment. On the other hand, the CLER estimator and the MDLE two-step efficiently
use all information at the consumer level.

Over all cases, the CLER estimator performs well. When only one source of identification
is useful, it roughly matches the performance of the estimator that exploits that source. When
both sources are useful, it efficiently weights the two. This exercise provides a finite sample
illustration of how conformance affects estimator precision.

9.2.3 Endogenous Characteristics. So far, we have assumed z , to be exogenous, which is
unlikely in empirical applications. This section makes ! is endogenous and varies the strength
of the available instrument b'. To facilitate comparison, we slightly alter the design to vary the
strength of the instrument without altering the distribution of z:'. Specifically, let the vector of
instruments b!, random noise u, and the unobserved characteristics ¢ all be drawn Normal(0, 1)

and then construct x! according to,

x;m = wabjl‘m + (1 - wa)<wcujm + (1 - wc)ﬁj )

3%We maintain throughout that 6% = 63 and 6% = 6% and so drop the index subscript for legibility and plot only

the distribution of é{. Due to the symmetry of our specification, the distribution for ég is the same up to simulation
error.
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Figure 5: Distribution of 6 across three estimators aswe vary 0" (rows) and 6~ (columns).
where w, = a / Va2 + (1 —a)2fora € [0, 1] governs the strength of the instrument b' and
w, = ¢ / \/m for ¢ € [0, 1] governs the degree to which the remaining variation
in 2 is due random noise versus the product’s unobserved quality. In estimation, we use b! as
an instrument for z!. We must also construct the differentiation instrument for z! using b*
following GH20. That is, we run a first stage regression of 2* on 2 and b! and use the resulting
predictions z' to construct the differentiation IVs.

Figure 6 plots the distribution of (67, 67, /3, ) (columns) varying a (rows), which governs the
strength of the instrument.?” When a = 1, ! is exogenous and b! = . The only difference
between this specification and that of our baseline (center row of figure 4) is that £ is normally
distributed here rather than Pareto. All three estimators perform well, but the CLER estimator has
a slightly tighter distribution around the truth. In the a = 0.5 case, the instrument has moderate
power. For the 6 parameters, this has no effect on the MDLE two-step, which does not use the
instrument to identify . The CLER estimator and the GMM estimator both become less precise.
The biggest decline in performance comes from the GMM estimator, which ignores the micro data
variation described in Section 5. As expected, all three estimators are less precise for 3. Finally,
when a = 0.15, the instrument is weak. As expected, the GMM estimator performs poorly for

all three parameters. However, the distributions of CLE and the MDLE two-step estimator are

37For this figure, ¢ = 0.5. Results varying c are available on request, but reveal little additional insight.
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Figure 6: Distribution of parameters (07,0, 3,) varying the strength of the instrument for x*. When
a =1, x; = b', the correlation between x' and b* declines with a.
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Figure 7: Distribution of é{ for different values of 0¥ comparing the full estimator with 11-node and
19-node quadrature integration with the GMM estimator.

essentially identical and remain precise for §. The MDLE two-step suffers essentially no loss
of precision for the estimate of # from the a = 0.5 case. The CLER estimator is no longer more
precise than the MDLE owing to the fact that the product level moments are no longer adding
useful information for 6, but it matches the MDLE’s performance. There is also a difference
for g between GMM and the two likelihood estimators. Since the MDLE two-step and CLER
estimators identify § and § from the micro data, all the useful variation in b! is preserved for the
estimation of .

9.2.4 Numerical Bias. Asdiscussed in Section 7.2, log likelihood based estimators subject to
bias due to the use of numerical integration over v. This bias will grow more severe as §” rises. All
the simulations above have used 11-point Gaussian quadrature (121 nodes over two dimensions

of v) to approximate the likelihood. We now compare the performance of the CLER estimator
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using 19-point quadrature (361 nodes) and the GMM estimator—which does not use the log
likelihood—when 6" is large and all other parameters of the DGP are set at our baseline.

Figure 7 displays the results. The 19-point quadrature estimator is displayed in purple. In
the first panel #¥ = 2, which corresponds to the top-center panel of figure 5. Approximation
bias appears to be minimal here as all three estimates show similar results. In the center panel,
0¥ = 2.5, some bias for the 11-point quadrature estimator is apparent, but it is largely eliminated
by moving to the 19-point quadrature. The GMM estimator, as expected, is unaffected. Finally,
when 0¥ = 3, bias is visible for both the 11 and 19 point estimators, although it is much reduced
for the more precise approximation.

Importantly, the degree of approximation bias is under the control of the researcher, and
can be alleviated at the expense of more computational resources. These results suggest that the
bias can be contained to acceptable levels given modern computing resources. Of course, com-
putational demands will rise with the dimension of §”. However, stipulating that the variation
exists to identify a high dimensional 6*, one could use sparse quadrature methods to attain a

high degree of accuracy with a reasonable number of integration nodes (e.g. Bansal et al., 2021).

10 Conclusion

Random coefficients discrete choice demand models are a workhorse of applied industrial or-
ganization. GMM-based estimators have combined data at the consumer and product level to
enhance the precision of estimates of substitution patterns. In this paper, we provide the CLER
estimator tthat optimally combines the likelihood for purchase data with product level exogene-
ity restrictions into a unified estimator that conforms to a wide variety of data environments
and achieves efficiency in each. This estimator does not require additional parametric assump-
tions relative to a GMM estimator. By showing how to transform the CLER estimator into those
used previously in the literature, we illustrate several trade-offs between statistical efficiency and
other researcher concerns, such as computational tractability and data availability. With that
said, we show that the CLER estimator is computationally tractable, suggesting that it will be
directly useful for applied work in a wide variety of settings. Indeed, the CLER estimator has an
additional advantage that inference is more straightforward and correct under more applicable

assumptions than the standard approach.

46



References

ABADIE, A., S. ATHEY, G. W. IMBENS, AND J. M. WOOLDRIDGE. 2020. “Sampling-Based versus Design-Based
Uncertainty in Regression Analysis.” Econometrica, 88(1): 265-296.

ALLEN, J,, R. CLARK, AND J.-F. HOUDE. 2019. “Search frictions and market power in negotiated-price
markets.” Journal of Political Economy, 127(4): 1550-1598.

BACHMANN, R., G. EHRLICH, Y. FAN, D. RUZIC, AND B. LEARD. 2019. “Firms and collective reputation: a
Study of the Volkswagen Emissions Scandal.” National Bureau of Economic Research.

BACKUS, M., C. CONLON, AND M. SINKINSON. 2021. “Common ownership and competition in the ready-to-
eat cereal industry.” National Bureau of Economic Research.

BANSAL, P., V. KESHAVARZZADEH, A. GUEVARA, S. LI, AND R. A. DAZIANO. 2021. “Designed quadra-

ture to approximate integrals in maximum simulated likelihood estimation.” Econometrics Journal,
25(2): 301-321.

BAYER, P., F. FERREIRA, AND R. MCMILLAN. 2007. “A unified framework for measuring preferences for
schools and neighborhoods.” Journal of Political economy, 115(4): 588-638.

BERRY, S., J. LEVINSOHN, AND A. PAKES. 1995. “Automobile prices in market equilibrium.” Econometrica,
841-890.

BERRY, S., J. LEVINSOHN, AND A. PAKES. 2004a. “Differentiated products demand systems from a combina-
tion of micro and macro data: The new car market.” Journal of Political Economy, 112(1): 68-105.

BERRY, S., O. B. LINTON, AND A. PAKES. 2004b. “Limit theorems for estimating the parameters of differenti-
ated product demand systems.” Review of Economic Studies, 71(3): 613-654.

BERRY, S. T. 1994. “Estimating discrete-choice models of product differentiation.” RAND Journal, 242-262.

BERRY, S. T., AND P. A. HAILE. 2014. “Identification in differentiated products markets using market level
data.” Econometrica, 82(5): 1749-1797.

BERRY, S. T., AND P. A. HAILE. 2020. “Nonparametric identification of differentated products demand using
micro data.” Yale University.

CHINTAGUNTA, P. K., AND J.-P. DUBE. 2005. “Estimating a stockkeeping-unit-level brand choice model that
combines household panel data and store data.” Journal of Marketing Research, 42(3): 368-379.

CILIBERTO, F., AND N. V. KUMINOFF. 2010. “Public policy and market competition: how the master settle-
ment agreement changed the cigarette industry.” BE Journal of Economic Analysis & Policy, 10(1).

CONLON, C., AND J. GORTMAKER. 2020. “Best practices for differentiated products demand estimation with
pyblp.” RAND Journal of Economics, 51(4): 1108-1161.

CONLON, C., AND J. GORTMAKER. 2023. “Incorporating Micro Data into Differentiated Products Demand
Estimation with PyBLP.” NYU working paper.

CRAWFORD, G. S., AND A. YURUKOGLU. 2012. “The Welfare Effects of Bundling in Multichannel Television
Markets.” American Economic Review, 102(2): 643-85.

CRAWFORD, G. S., R. S. LEE, M. D. WHINSTON, AND A. YURUKOGLU. 2018. “The welfare effects of vertical
integration in multichannel television markets.” Econometrica, 86(3): 891-954.

47



FREYBERGER, J. 2015. “Asymptotic theory for differentiated products demand models with many markets.”
Journal of Econometrics, 185(1): 162-181.

GANDHI, A., AND A. NEVO. 2021. “Empirical models of demand and supply in differentiated products
industries.” In Handbook of Industrial Organization. Vol. 4, 63-139. Elsevier.

GANDHI, A., AND J.-F. HOUDE. 2020. “Measuring Substitution Patterns in Differentiated-Products Indus-
tries.” University of Pennsylvania and UW-Madison.

GOEREE, M. S. 2008. “Limited information and advertising in the US personal computer industry.” Econo-
metrica, 76(5): 1017-1074.

GOOLSBEE, A., AND A. PETRIN. 2004. “The consumer gains from direct broadcast satellites and the competi-
tion with cable TV.” Econometrica, 72(2): 351-381.

GRIECO, P., C. MURRY, AND A. YURUKOGLU. 2023. “The Evolution of Market Power in the U.S. Automobile
Industry.” working paper.

GRIECO, P., C. MURRY, J. PINKSE, AND S. SAGL. 2022. “Conformant and efficient estimation of discrete
choice demand models.” Penn State.

HACKMANN, M. B. 2019. “Incentivizing better quality of care: The role of Medicaid and competition in the
nursing home industry.” American Economic Review, 109(5): 1684-1716.

HAHN, J., AND W. NEWEY. 2004. “Jackknife and analytical bias reduction for nonlinear panel models.”
Econometrica, 72(4): 1295-13109.

Ho, K. 2006. “The welfare effects of restricted hospital choice in the US medical care market.” Journal of
Applied Econometrics, 21(7): 1039-1079.

HONG, H., H. L1, AND J. L1. 2021. “BLP estimation using Laplace transformation and overlapping simulation
draws.” Journal of Econometrics, 222(1): 56-72.

IMBENS, G. W., AND T. LANCASTER. 1994. “Combining micro and macro data in microeconometric models.”
Review of Economic Studies, 61(4): 655-680.

JIMENEZ-HERNANDEZ, D., AND E. SEIRA. 2021. “Should the government sell you goods? Evidence from the
milk market in Mexico.” Stanford University Working Paper.

KETZ, P. 2019. “On asymptotic size distortions in the random coefficients logit model.” Journal of Economet-
rics, 212(2): 413-432.

MONTAG, F. 2023. “Mergers, foreign competition, and jobs: Evidence from the US appliance industry.”

MyYO0JO, S., ANDY. KANAZAWA. 2012. “On Asymptotic Properties of the Parameters of Differentiated Product
Demand and Supply Systems When Demographically Categorized Purchasing Pattern Data are Available.”
International Economic Review, 53(3): 887-938.

NEILSON, C. 2019. “Targeted vouchers, competition among schools, and the academic achievement of poor
students.” mimeo, Princeton University.

NEVO, A. 2000. “A Practitioner’s Guide to Estimation of Random Coefficients Logit Models of Demand.”
Journal of Economics & Management Strategy, 9(4): 513-548.

PAKES, A., AND D. POLLARD. 1989. “Simulation and the Aymptotics of Optimization Estimators.” Economet-
rica, 57(5):1027-1057.

48



PETRIN, A. 2002. “Quantifying the benefits of new products: The case of the minivan.” Journal of Political
Economy, 110(4): 705-729.

RIDDER, G., AND R. MOFFITT. 2007. “The Econometrics of Data Combination.” In . Vol. 6 of Handbook of
Econometrics, , ed. James J. Heckman and Edward E. Leamer, 5469-5547. Elsevier.

ROBINSON, P. M. 1988. “Root-N-consistent semiparametric regression.” Econometrica, 931-954.

STAIGER, D., AND J. H. STOCK. 1997. “Instrumental Variables Regression with Weak Instruments.” Econo-
metrica, 65(3): 557-586.

STARC, A. 2014. “Insurer pricing and consumer welfare: evidence from Medigap.” RAND Journal,
45:198-220.

SWEETING, A. 2013. “Dynamic product positioning in differentiated product markets: The effect of fees for
musical performance rights on the commercial radio industry.” Econometrica, 81(5): 1763-1803.

TRAIN, K. E., AND C. WINSTON. 2007. “Vehicle choice behavior and the declining market share of US
automakers.” International economic review, 48(4): 1469-1496.

TUCHMAN, A. E. 2019. “Advertising and demand for addictive goods: The effects of e-cigarette advertising.”
Marketing Science, 38(6): 994-1022.

VAN DEN BERG, G. J., AND B. VAN DER KLAAUW. 2001. “Combining micro and macro unemployment
duration data.” Journal of Econometrics, 102(2): 271-309.

WALKER, J. L., M. BEN-AKIVA, AND D. BOLDUC. 2007. “Identification of parameters in normal error compo-
nent logit-mixture (NECLM) models.” Journal of Applied Econometrics, 22(6): 1095-1125.

WOLLMANN, T. G. 2018. “Trucks without bailouts: Equilibrium product characteristics for commercial
vehicles.” American Economic Review, 108(6): 1364-1406.

49



Appendices (for Online Publication)

A Selection

Our methodology combines the micro-sample with the product shares by integrating out z;,, in the
choice probabilities when individual 7 is outside the micro-sample, yielding

This allows for a variety of forms of selection. Clearly, random selection poses no difficulty as in this

case wfnjo = Pr(D,,, = 0)7,,,, leading to the loglikelihood presented in (6) (up to a constant).
Interestingly, deterministic selection based on y;,,, of the form D,,, = D}, 1(vy,o,, € J) where
D, israndom and J represents a subset of products is also straightforward. This case is common, for
example with vehicle registration data, administrative data of regulated industries, or data on sales of a
particular subset of firms. In this case, Pr(D,,, = 1 N y,;,,, = 1] 2;,,,) = Pr(D;,,, = D)m;im1(j € J), 50

we have
D=0 _ Tjm JEJ )
Pr(D;,, = 0)m; jed

jm

Moreover, in both of the above cases, because only logarithms of the choice probabilities appear in the
loglikelihood, the Pr(D},, = 0) factor only adds a constant to the loglikelihood and is hence irrelevant.

Selection dependent on z;,,, can be accommodated by accounting for selection when integrating over
the distribution of demographics. GP2=°(z), the distribution of z;,,, in market m but not in the micro
sample, and its complement G2~ (z) are easy to compute from the consumer level data and the known
distribution of z,,, in the population, G, (z). If selection does not depend on v, ,,, except through z,,,
then,

D=0 _ _ _ z _ _ z D=0
7ij - /Pr(Dzm =0 | Rim = Z)ﬂ-jm dGm(’Z> - Pr<Dzm - O) /ﬂ—jm(éa 0) dGm (Z)
More general forms would have to be explicitly modeled and are outside the scope of this paper.

B Weight matrixis block-diagonal

Note that the expectation of the score of log L givenz, &isfory = [8',0",6"]" under random sampling
equal to
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E(Z Dzmz Z:a'yﬂjz;r? + Z (I_Dzm)z<1_Dzm> ija'yﬂ-jm xvﬁ) =
m=1i=1 =0 Tjm m=1i=1 =0 Tjm
M N, T M N, I,
SPDHITHTE SETE 3) IETMTS e ) R0
m=1 i=1 7=0 m=1 i=1 7=0

C Share constraints

C.1 Efficiency considerations: a simple example

Consider the situation in which we have a randomly selected consumer level sample from a single
market in addition to product level data including shares. Then the objective function can be written as

N

log L(v)) = Z{Dz log LM¢(¢)) + w(1 — D;) log LM (4) }, (30)

=1

forw=1and¢ =[0',§' ] wherelog L™c = Zj y;;log ;" and log L™ = Zj y,; log 7; are contribu-
tions to the loglikelihood for observation ¢ and D, is the micro selection dummy which is independent
of everything else and equals one with fixed probability y. We allow for 0 < w < oo to incorporate
the possibility of unequal weighting. Both intuition and mathematics indicate that choosingw = 1is
optimal.

Lemma 2. Under the stated assumptions we have, v N(¢) — 1)) 4N (0,V), where V= (xA +
w(l = x)B) " (xA + w?(1 = x)B)(xA + w(l — x)B)~", with A = —E{3,,,~ log L™(¢) } and B =
—E{9,,, log L*°(¢)) }. The optimal weight w equals one. O

Proof. The asymptotic distribution is an immediate consequence of standard extremum estimation
theory. Since both A, B > 0, the first derivative of VVwith respect to w equals zero at w = 1 and the
second derivative of Vwith respect to w equals

XC~'BO—! 4+ 2C~'BC'BC~" + 3wx*C~'BC~'BC-'BC~! > 0,

where C' = yA + w(1 — x) B, which follows from tedious but simple calculus. O

We now turn to the possibility that one maximizes the consumer level likelihood subject to the
product level shares matching the choice probabilities. We do so by considering the asymptotic variance

of
N

1;; = arg max Z{DZ log LM (1)) + wlog L™(1)) }, (31)

i=1

as a function of w and then lettingw — oco. Note that imposing that the gradient of Zj\i , log Li™¢ equal
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zero is equivalent to imposing the product level share equations. Note further that there is a subtle
but important difference between (30) and (31) in that in (31) we sum over all log L"*°, not only over
those we lack consumer level data on. Finally, using only the product level likelihood is insufficient for
identification since all first order conditions are satisfied by setting shares equal to choice probabilities.

Lemma 3. Let V be the asymptotic variance of ﬁ;. Then V; = lim,, V, =
{xAU,(U, AU,)"'U, A+ B}~' >V, where U, contains a full set of orthogonal unit length eigenvec-
tors of the null space of B. O

Proof. Standard extremum estimation theory yields V* = (YA + wB) }{xA4 + (2xw + w?)B}(xA +
wB)~!. Taking w — oo means that the 2ywB term is negligible compared to w? B. The same is not
true for y A since B does not have full rank. Use the spectral decomposition B = U, D, U. 1T where U,
contains orthogonal eigenvectors corresponding to nonzero eigenvalues. It is straightforward to verify
that the inverse of YA + w? B is (up to terms that vanish as w — o) equal to UO(XUOT AUO)_lUOT +
U,D;'U, Jw?.3® Pre and postmultiply by yA + wB and take w — oo to obtain V% . Finally, note that

VE LVl = AU, (U, AU,) Uy A+ B—{xA+ (1—x)B} =
X{AU (U, AUy)*Uy A— A+ B} = x[(A— B)Uy{U,y (A—B)Uy}"'Uy (A— B)— (A—B)] <0,

since the right hand side is minus an annihilator matrix. ]

The proof shows that equality of the asymptotic variance only obtains if A — Bis in the null space of
B, which would happen if the coefficients on all consumer level regressors equaled zero. Conversely,
one would expect the difference to be large if the consumer level regressors are informative.

A second consequence is that the efficiency improvement is greatest for the estimation of the §
coefficients. The intuition for this finding is that imposing the aggregate share equations does not limit
the exploitation of variation in the micro level regressors, but it does suggest that information contained
only in the consumer level sample is not used to recover coefficients on product level coefficients.

C.2 Asymptotic variance comparison in a single market

This appendix provides formulas for the asymptotic variance of the MDLE of ¢) and the estimator that
maximizes the mixed logit objective function subject to the share constraints for a single market, i.e.
m = 1. The formulas below are valid for the case in which selection is random; otherwise an adjustment
should be made, e.g. 7T]D =0 should replace U and some cancellations do then not obtain.

We use L™¢ to denote E Zj: o Yijlogmst, L its gradient, L7 its Hessian, and L™
£ Z;.]: , Yijlogm;. Let similar symbols be analogously defined.

For the MDLE, if y > 0, the asymptotic variance of v/ N(t) — ) and x > 0 s then

38 Just premultiply by UJ ,U 1T and postmultiply by Uy, U; (four combinations) noting that U, J Uy and U1T U,
are the identity matrix and the other products are zero matrices.
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_{Xu_mm u_mac } (32)

For x = 0, consider the limit distribution of /N X(?/; — ) for x > 0, 1i.e. multiply (32) by x and then let
x 4 0. This takes some caution since L;/” is generally singular.
The promised but incorrect asymptotic variance for the share constraint estimator is

I
— {895] o1 [I 89r(5] /x, (incorrect variance)

where 9,70 = —(1L22¢) 110 and & = L3 + 9,0 LT + LIO,76 + 9,0 ' L, 6. The correct
asymptotic variance formula for the share constrained estimator is

. . —1 1
[ x® XEEH00TLE)| Ix® 0 x® Ll
[ mac [ mac 0 u_l(%ac X(I]—gﬂeic + ”_grgic 89T 5) ﬂ_gr:;ac

The formula in (33) is based on the fact that the share constrained estimator uses the following moment
conditions:

N J
Z ZyijDi (89 logm;" + 90" O logﬂji> =0,
N J
ZZy slogm; =0,
i=1 j=0

ST N «J N «J ~1
Where 895 = - Z,L':]_ ijo yijaef log Fj(zi:]_ Zj:() yij855T 10g 71—])
Finally, a mixed logit estimator ignoring the product share information would have asymptotic

(34)

variance (—IL%¢) ! /x.
D Computation

The following lemma shows that the ds x ds matrix P — %,y used in (25) can be expressed as the
product of adg x (d}, — dz) matrix with its transpose. Note than when computing K it is useful to first
project out all exogenous regressors that appear in both X and B because it is less expensive to compute
the singular value decomposition of a matrix of lower rank.

Lemma4. Let X = [C X]and B = [C B], i.e. C are the columns shared by X and B. Let further
X' = me( and B* = mcé with 771 an annihilator matrix (for C). Then,

Vo {6 — XB(0)} Pp{d— XB(S)} =6 KK, (35)

where X = U7, I with U 5, U 5 matrices with orthonormal columns spanning exactly the column
(L
spaces of B* and X", respectively.
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Proof. Recall from the text in section 7 that (35) can be expressed as § ' #*§ where #* = #; — Py x-
Noting that 5 = P + Pp. and Py _x = P+ Py, x+, We have P* = Pp. — Py k.. The stated
result then follows by application of the singular value decomposition to both B* and X*. O

E Hessianlemmas

This appendix shows several statements asserted in section 8. First we show that the scores of the
objective function with respect to 6 and ¢ are collinear if #* = 0, for which the following lemma
suffices.

Lemma5. Lety?, = [0, 6, ]. If 6% = 0 then Oy w7 l0g L can have rank at most J,,,.

Proof. Consider the case in which x,,, = 1, which is no less favorable than any other case. Then, since
6% =0, ﬂ]z?m isflatin z and hence at the truth,

N,, J

3
3

Oy log L=

YigmUjms
i

Il
—
<.

Il
o

1 T dgv)-dimensional vectors {v;,, };-];”0. Now, because the expectation of the score is zero at
the truth, 3 ;’

m
—0 Tjm

for some (J,

J - o .
Vi, = 0,800, = — ngl T imVjm/ Tom 18 @ linear combination of the remaining

jm
VS, 80 the {v,,,, } span a space of dimension no greater than .J,,,. Further, recalling from section 8 that
J is the sigma field generated by B, X, &, {N,,, }, {x.;n } »

7 7 T T
[E(@W log L 0, log | g) . (Z > Y 0im Yigm Vi ﬂ) = ViV
j§=0 5*=0 Jj=0
which hence has rank no greater than J,,,. Apply the information matrix equality. O

Lemmaé6.

— Oy, log L— 0ys7 log L (—856r log L + 855rﬁ> 057 log L~
— (399T log L — Oys7 log E(a&g log E)flc’)&@r log f)) +
ys 1og L(;57 log f})flc‘)wrﬁ(c?(%r log f/)flc?é@r log L.
Proof. Simplyuses (A + B)™! ~ A=t — A~'BA~! for A dominating B. O

From here on, we use the convention that superscripts to a matrix indicate the corresponding block
of the inverse of the matrix.

Lemma?7. If Nx/M — ooand §* = 0 then the dominant term of the (07, 6*) block of the inverse
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Hessian evaluated at the truth is
. R . -1
— (8929; log L — 8. 57 log L (9s457 log L) ! Dsq-7 log L) ,
Proof. First, note that by partitioned inverses,

—0,.,.7 log L —0,.,.7log L —0y.47 log L

QY — —39%; log AL —%V@J log L —0Opusm log L )

—0,.rlogL  —0., log L —0ss7 logi—i—a&;rf{*

where 856rf[* = 855r12[ — Qwrf[(%ﬁr ﬁ)_lﬁﬁgrﬁ. Since —E(9,. .7 log L | g) is positive semidefinite

withrank Jbylemma 5, we can replace 0

oy log Lwith A OssT log LA". Thus, by partitioned inverses

we get
~ - - . -1 A\t
Q0 ~ (6925r log L — 0.4 log La’ <_ﬂ855r log LA " + a&sTH*> A dyy.7 log L)
- - N -
~ (—89292r log L + 0.7 logL((’?&Sr log L) Ogp-7 lOg L) ,

as asserted. O

Lemma 8. Absent consumer data and evaluated at the truth, Q%% ~ (9,0 9,1 11", 6)71, where

Oss7 IT* was defined in lemma 7 and where 6(6) solves the (expectation) share constraint.

Proof. Bylemma 6 we get,

~ =~ = 7 T -1 T -
0o — <_89V9VT log L — 0p. 57 10gL<—866r log L + Bé(srl'[*> Osgur log L) o

. . -1 -
<_69V6,,T log L 4 0. 57 10gL<855r log L) 05907 log L+

Oys log L (0,57 10g L) o, (057108 L) "0, log i) s (0907 055 110,76 -

where the last step follows by Khinchine’s weak law of large numbers and the implicit function theorem.
Note that the right hand side in the lemma statement is exactly the §” component of the asymptotic
variance matrix of a BLP GMM estimator. O

F Proof of Theorem1

The proof requires the introduction of some notation. First, we define a recentered version of our log
likelihood,
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Emac(em 50) 71—jm (wOm)

Zmac(g 5 ) — log 2 0:%0) _ N NV o g Timtom)
m ( ) 8 Lmac(975) Z J gﬂjm(9,5m>

Lmie(9),5y) < L Zim (o VT (0,6, G0
~mi - — Tim Tim\V; O,
’C%1C<97 6m> = log M = Z Dzm Y;]m log = om Z]im )

Lmie(d,0) i=1 =0 ﬂ-jm(wOm)ﬂ'jm (0,9,,)

and use fm = ﬁnm%ac + ﬁﬁic, £ = ZTA:: ) ﬁm. The definitions EI;L&C, ﬁrﬁfc are recenterings of the macro
and micro terms of — log im to make them equal to zero if evaluated at the truth. Their population
analogs have no hat, e.g. £m¢(§ 6, ) = E{fﬁ}fc (6,6,,) | 7}. Subscripts corresponding to parameters
denote partial derivatives, e.g. £§f§}w is the Hessian of the micro likelihood for market m, where we use
the subscripts z, v to denote partial derivatives with respect to 6%, 6.

Let Q(¢p) = £(¢) + I(6) with £(¢) = —log L(v)) and I1(8) = I1{3(8),8} = 6 KK '§/2. Thisis
our objective function (5) after concentrating out S and the above-mentioned recentering. We further
define Q(v)) = £() + I1(9).

Next, we define the objects, 5,(8) = {(0) € arg min; (6, ), 5§(0) € arg min; £(6,6), and
65 (¢) = argmin, £™(6, ) and their sample analogs which receive hats. §7*(¢) is unique since
there is a one to one mapping from choice probabilities to J as shown by Berry (1994). We will show that
all three are equal at 6,,.> We further show that the difference between 6§ (9) and &, () is negligible at
anyf € ©.

Finally, let Q* (6, §) = £™<(0, §) + £™"(0, §) + I1(6), where

Jm
~ S .
’C%ac*(‘g’ém) :Nm § S‘mlog$7
=0 ! 71—jm(ea 5m)

so we replaced the true choice probabilities in the numerator of EI,;;aC with observed market shares, s,,,,.
Define further R(6, §) = £™<(6, §) + L™ (6, §) + IT{6*(0) }. where the sample micro likelihood is
replaced with its population analog and the argument of IT is now 63'*°(#) instead of 4.

Proof of theorem 1. Because 3 is a linear combination of 8, we only establish asymptotic normality
of A(qﬂ — 1)) to reduce notation. Now, the (1), ¢) block of Vis Q;}p(@g) so we will show asymptotic
normality of ZA)leA(LE — b, ) where D, = AQ;;(@AT.

Lemma 9 in appendix F.2 establishes consistency of 6 for 6, which guarantees that (6, ¢) is convex in
0 with probability approaching one. Asymptotic normality is then established by lemmas 26 and 34. [

Before presenting the supporting lemmas, we outline the intuition of the proof.

¥1n fact, the steeper gradient of & at 0, relative to §3(6) is the source of our estimator’s efficiency gains
relative to share constrained methods discussed in section 6.2.

56



F.1 Intuitive outline of the proof

F1.1 Consistency of f. We establish consistency of g for 6, inlemma 9 in appendix F.2. We do so
in two steps, first obtaining an upper bound to the rate at which (a centered version of) the profiled
objective function at the truth (6,)), min; Q (64, 0) diverges, then obtaining a lower bound to the rate at
which the profiled objective function outside an e-neigborhood of ¢, diverges. The lower bound outside
the neighborhood diverges faster than the upper bound inside. Since f minimizes ming O (0,0),it must
be true that 6 £> 6,. The following two paragraphs describe these steps in more detail.

We achieve the first step by obtaining an upper bound on the divergence rate of €* {6,, gmac (09)}s
which is trivially above the minimized profiled likelihood. This is (up to a constant shift) equal to the
profiled objective function of a share constrained estimator. Lemma 10 establishes this bound. Noting
that Q* consists of three terms, (6, ) = £™<(0, §) + £™*(6, §) + 11(4), the lemma proceeds by
bounding the individual terms: The first term is bounded by lemma 11, which establishes a bound of
AM,/X. The second term, £™3*{6,,, 6™(6,,)}, equals 0 by construction. The final term is shown to be
bounded in probability by lemma 12.

Lemma 18 establishes the second step by providing a lower bound on the rate of the profiled objective
outside a neighborhood of §,,. Here we make use of a surrogate % of the unprofiled objective Q* which
(a) replaces L™ with £™i, jts expectation condtional on 7, and (b) replaces I1() with II{652(0) }.
Lemma 20 shows that * is well approximated by  in the sense that |Q* — &|/ is uniformly small.
Lemma 19 shows that % diverges at at least the rate NxA? + M uniformly in (6, §) for § away from 6,,.

With consistency established, lemma 25 provides a lower bound on the rate of convergence using the

same machinery.
F.1.2 Asymptotic normality. With consistency established, we show asymptotic normality in two
(large) steps in appendix F.3. First, we show in lemma 26 that for any vector v, the estimation error
v’ (175 — 1)) isequal to —vTQ@}p (%)Qw (1) plus asymptotically negligible terms. In the second step,
we apply a central limit theorem for martingale difference sequences to show asymptotic normality of
@Xl/ QAQ;%Z) (%)Q¢ (1h,) in lemma 34. Recalling that D, = AQ@) ()A", this fact, together with the
first step, establishes asymptotic normality of 257\1/ 2A(1ﬁ — 1)) and completes the proof.

The first step has three parts which correspond to 9, 6% and 6* respectively. In the § part, we show
that 5m — 9,,, as a process of 6 can be approximated by a linear combination of the gradient of the
likelihood function, £ s> uniformly in m and f in a neighborhood of §,. This is established in lemma 27.40
The 67 part, established in lemma 32, shows that uniformly in a neighborhood of 6%, 6%(6) — 95(6)
can approximated by a linear combination of the gradient of the objective function Q which uses the
approximation of . The 6" part, shown in lemma 33, establishes that o — 0 can be approximated by a
linear combination of the gradient of the objective function and the previous approximations. Finally,
these results are collected in lemma 26.

In the second step, there are three challenges to applying a central limit theorem to

40This approximation involves the likelihood rather than the objective function ) because § m (0) is a function of
0; for fixed 6 the influence of the product level moments is negligible analagous to the Berry (1994) share inversion.
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Dy 2 AQ ()2 (89) = = D3 A — ).

First, the dimension of ¢ is growing with M, which is why we focus on a finite dimensional linear
combination of 1/3 The second challenge is that § acts as a product quality parameter in the likelihood
and as a random variable in I (e.g., due to its dependence on &). Third, the number of consumers in the
micro sample, the number of consumers in the population, and the number of markets all diverge at
different rates. Moreover, the information contained in the micro sample is allowed to decrease in the
case of weak micro identification.

We overcome these challenges by using a martingale difference central limit theorem. This allows
for the varying rates of the third challenge. However, @Xl/ QAQ@}p (Q/JO)Q¢ (1) itself is not the sum of
martingale differences due to endogeneity arising from the second challenge. We address this issue
by showing that the difference between @Xl/ 2AQ;7}D (%)Qw (1) and its analog replacing some objects
with their expectation conditional on either J or Z—which is a sum of martingale differences—is
asymptotically negligible.

Lemma 35 uses lemma 49 to establish normality of the martingale difference sum analog. Lemma 36,
supported by lemmas 37 to 39, shows that the difference between ZA)XU 2AQ;}p(@Z}0)Q¢(¢0) and the
analog is asymptotically irrelevant.

F.2 Consistency
Let®, = {0 € ©: |0 — 0] > €}
Lemma9. § 0o

Proof. For consistency, we only need to take a fixed ¢ > 0. Then,

min min Q*(6, ) > min min R(6,§) =
0cO, 6cA 0cO, 6cA

N2+ M = My/XA+ 1 = Q*{0,,6™<(6,)} = min Q*(6,,6), (37)

€
where the rate inequalities follow from lemmas 10 and 18. Hence, with probability approaching one,
the minimizer of Q*, and hence the minimizer of {2, will not be an element of O, x A. O

F.2.1 Showing mins 5 *(6,,8) =< Q7{0,,0™<(0,)} =< MyXA + 1. Let a;;,(¢,,) =
log ﬂj,;f (¢,,) —logm., . (1,,) and let additional subscripts denote partial derivatives.

jm
Lemma10. Q*{0,,0™(6,)} < AMy/X + 1.

Proof. Follows from lemmas 11 and 12 and the fact that £™2<" {4, 5ma°(00)} = 0 by construction. [
Lemmall. £™¢{f, 5™¢(9,)} < AM/X.

Proof. Thelefthand side is Zi\f: . Zfi"{ D;,, Z;']:o Y, imA@ijm (Yom) =i jm (¥,,) }- Use the mean value
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theorem to obtain

- Z Dzm z]ma’éz]m (womxgrnrlbac(@()) - 5Om>

mij

) Z 5mac - ) DszVz]maééijm<007 5m><gglmac(90> - 50m)7

mz]

The square of the first order term is by the Schwarz inequality bounded above by
- Z IHZ Dzm zyma&gm QbOm ” Z ”(Smac 6Om”2 = MX)\QM ]\4'2)()\2

by lemmas 14 and 16.
Now the second order term. It is bounded above by a half times the square root of

Z NZ[16m2(05) — G, ZHN ! Z Dy Yijm@ssi5m (0o 5m)H : (38)

By lemmas 14 and 17, the right hand side in (38) is < M x A\2My = \2M?y. O
Lemma 12. II{5™¢(4,)} < 1.

Proof. We have

20T{5™ () } = {67 (0g) G } ' H I {O™(8g) =G +2{0™(0g) —0p } KK e+ HKTE < 1,

by lemmas 13 and 15. O
Lemma13. II(d,,,) < 1.
Proof. Follows from the orthogonality of B, £ and the definition of X' O

Lemmal4. Fort =1,2, fo:l NL [0m2¢(8,) — 8, |2 < M.

Proof. We show the result for ¢ = 1, where the result for ¢t = 2 is similar. From lemma 15, it follows that

ZN 1522528y — G2 = Z | (25 7 W0m) ) L — |

Now take the expectation of the right hand side conditional on /7 to obtain

f_l te] (052 T (Wom)) (Vo) — T (Vo) 70 )} (7 7o (0 )
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where IT¥, = diag(m,, ). Now take its expectation and use lemma 48 and assumption C to conclude that
a sufficient condition is that

max E ma)fi eXp(5\§jm])<maxJ Eexp(5/¢;,,]) < oo,

m

which is implied by assumptions C and D and lemma 52. O

Lemma15.

[omec(6) — a55e(6) — Dy T L0, TBEONY) (50— Ton ()| < 1

_max \/ ., Sup

0c©

Proof. Thisis an application of lemma 53. O

Lemma 16. Zi\;f IHZ Dzm ZJmazSijm<w0m)H2 = MS()‘2

Proof. Note that the inner summand has mean zero conditional on /. Take the expectation of the left
hand side conditional on J to obtain }; i Xm ( (Yo ) asi jm (Pom )| | 1) Expand the norm
around 6§ = 0 and apply lemma 47. O

Lemma17. Z _, sup, NS i Dim Z]ma(;&jm(é?o,ém)\f < My\?.
Proof. The left hand side is bounded above by

M M

Z ( Z Dzm ijm SupHa’&Sz]m( 0> m) ”) Z )\2 MX/\2
=1 m ¥ Om m=1
by applying lemma 47, taking an expectation, and expanding asg; ;,,, (0, 0,,,) around 5 = 0. O

F.2.2 Showing min,.g mings Q0 (6,6) = mingeg Minge R(0,0) = NxA2 + M.

Lemma18. mingcg scn Q*(6,6) = (NxA2 4+ M)e?

Proof. Follow from lemmas 19 and 20. O
Lemma 19. For all (possibly decreasing) e > 0, mingce_sca R(6,8) = (NXA2 + M)e?

Proof. By condition (f) of assumption F, ming.q II{05°(0)} = M 2. Further, by assumption G, for
some C™¢ > (), expanding £™ around 6, and applying lemma 47 yields

L9, 8) = N 0— 03 =N 07 — 0312(1 — A2) + A2€%} = NxA2e?
min min £7(0,0) = Ny min|0 — 6 [X = Nx  min_ {0 — 65]°( ) A€} = NxA®e,

as asserted. O
Lemma 20. max,co_scal{Q(0,0) — R(0,0)} / R(6,6)] < 1
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Proof. Follows from lemmas 21 and 22. O
Lemma21. sup, ., supéeA]{fmic(Q, §) — £™(6,8)} / R(8,6)] < 1.

Proof. Combine lemmas 23 and 24. O
Lemma 22. max,ce_scal[I1(0) — I1{d5%°(0)}] / R(6,0)] < 1.

Proof. We have
2[T1(8) — TI{632¢(0)}] < 20K {6 — o2 (0) |1 K " 6m2c(0)] + | K {6 — o52°(6) }|?,

uniformly in 6, §. Now, supge@HJCTd{)“ac(Q) | < sup,_g 65 (0)] = VM. Further,

|77 (5 — (O} _

max =
0eO, ,5eA ®(9,6)
SOOI R i (01 OO S ) ki (1) RO
0O, ,6eA x(6,6) 0O, ,6eA R(6,6) ’

by lemma 15 and the definition of R. O]
Lemma 23.

sup sup [E7(0:0) = £7E0,55(0)) — £™6,6) + £™40,55%(0)))" |

040 & R2(6,0)

Proof. Leta,,,(0,6,,) = Zj:b [DimYiim@ijm (0, 0,,) —E{D;,,, Y05, (0,6,,) | I}]. We have by the

m= igmligm
mean value theorem™* that
jmic(ej 5) . ’é\mic{g, 6(r)nac<9)} o L‘mi(:(e, 6) + ,Cmic{a 6(r)nac<0)}

~ 1 ~
=D i {0, 05 (0)H8,,, — 3525(0)} + 3 Z{% — O (O)}  ssim (6, 65,) {6, — G5 (0)}. (40)

mi

Square each right hand side term in (40) and apply the Schwarz inequality. For the first order term, we
get an upper bound equal to

> e[ s 10,55 S0 N Ol — (O] (41)

Now,

411f one applies the mean value theorem to a vector-valued function then the ‘mean value’ can be different for
each element of the vector. That distinction is immaterial here, so we ignore it in our notation.
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__ Smac 2
sup Z NmCTr:lLac “(Sm _ 6Om (0> “ <

0€0_,0eA 5 R(0,9)
__ Smac 2 Smac __ Sfmac 2
sup ZNnglLac(”dm A(sm <0)” + ”(Sm (02 5Om (9>H ) j 1. (42)
0€O.,5eA R(0,0) R(0,0)

Further, by lemma 47,

1 . Xom
Z Nm0$ac sup E g) < c Z C%ac’

0€©:07+0

A5im {0, S0
(HZ:% {ﬁe;ﬁ (<9>}H2

for some C* < oo. Take the expectation conditional on the x,,,’s and divide by j@(&, 0) to obtain for
some constant C* < oo an upper bound equal to

c* 0%||2 N rol97 )12 a2
sup ZI” X |¥°] = sup % < sup M <1 (43)
€0, ,6eA R(0,96) 9eo,5ea  R(6,0) oco.5ea  R(,0)
Now,
supl " e (\\Za&m{e,éanx(w}\f—E(!\Za&m{e,éan;6<9>}\f\z))]. (44)
peo| 5 Ny ORI -

which can be expressed as

)

0cO -

max|§ Am(0)| < max max
po t=1,..,T0cO,

D (A (0) = A, (6))] + max |37 A4,,(6)

for a partition {O, } of O consisting of a given T 'sets for which distances in each ©, are minimized and
where 0, is an arbitrary point of ©,. Now for any ¢ > 0,

Ty, E(42.6) 1)
2

P(t_nllaxT’%: Am(et)‘ > cM) < 2 ENE < 1L (45)
That leaves us with
_ ~1/d
e, max]3 (A (6) = An ()} < CaT ™ max 3 J Ao ()] < M. (46)

where C} is a constant only depending on d. From (45) and (46) it follows that (44) is < M < 4 (0,9)
for all 4, 6. Combining the rate for (44) with (42) and the rate in (43) establishes that (41) divided by
&2(0,8) vanishes, uniformly in 6 € ©_, 5 € A.

The second order term in (40) is similar but easier. O
Lemma 24. . .
mic mac _ micC mac
wp |[E7EL058(0)) — £ 0,550
6cO_,5eA R(0,0)
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Proof. Thisis asimple albeit messy application of lemma 51, noting that ., (0, v;,) = 0 forall ¢},
and that the moment restrictions are satisfied by lemma 47. O]

F.2.3 Lower bound on rate.
Lemma?25. 6 — 60, < 1/\/M

Proof. The proof is identical to the proof of lemma 9, but needs one additional step. Indeed, if one
allows e to vary then the rate inequality in (37) becomes (N2 + M)e% = My/X\ + 1, for ‘signal’ to
dominate ‘noise.” Hence, the convergence rate of 0 is VM2YA? + 1 / V/Nx\2 + M. First consider the
possibility that NxA? < M. This implies that

MyXA < M| =X — My | EZm 2™ g [ Xm <
VX Vv = S, N~ B

by assumption D. Finally, if NxA? = M then

Myxx ,  Myx  _ [Mx | Bxwm 1 .
NxA2 " Nx/M/(Ny) Nx E(NpXm) — M

F.3 Step one of asymptotic normality
Lemma 26. For any fixed vector v with |[v] = 1, v (¢ — ¢) =~ —UTQ;M%)QM%)-
Proof. Follows from lemmas 27, 32 and 33. O

F.3.1 Jasaprocessindexedby6. Let Sfl (6) denote the minimizer of £, (6, §) with respect to § and
let 69 = 4.

Lemma 27.

max sup Nyy|[5,(0) = G (0) + £125540: 80 (0} 10540, 80, (00} < M.

m=1,..Mgce;

Proof. Bylemma 30 and the triangle inequality, it suffices to show that

max  sup NmHgm(H) — S,ﬁ(@)H < M.
m—l,...,MgEGzM

First, since Q5{6,5(6)} = 0 for all # by definition, we have £, ;{6,5 (0)} = -k, % 5(6) < VM,
uniformly in m, 6 by lemmas 29 and 31. Thus,
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VI s s 1,5,
m=1,...,M g¢

max = sup
m=L,..Mgce:

\ZN L35 10,85 (0)}N,,. 8, (6) — 35, (6)

where gm; ;(0) lies between 5, (A) and 62 () with only the j-th element different. The stated result then
follows from the fact that (conditionalon 7) £,,, 55/ V,,, isani.i.d. average thatisboundedly differentiable
ind,,, that £, 55/, has eigenvalues bounded away from zero by lemma 28, and that the function
£, ss/N, onlydependson.J, < .Ja.s.byassumptionD. O]

Lemma 28. For some sequence {¢,,} forwhich 1/v/M < ¢;; < 1and ©* = { € © : |0 — 6, || < ¢},

[P<E|m =1, ...,M : mip )‘min[’céém{a 50m<9)}] < )‘min{’666m<w0m>}/2> <1

€M

Proof. Leta,,(0) = A\pin[Lssm s 0om (0)}]/N,, and note that Z Hﬁ&;@ m | is bounded by lemma 47.
Thus, noting thata,,, (0,) > Apnin{ Lm2(1y,, ) }, We have for some ﬁxed C* < o0,

[P(Elm peo;, = e
M M M
<> (gggn 2a, ()=, (09)} < ~a,,(00)) < D P(Crers = a,,(0)) < D CPe Ea P (6y),
m=1 m=1

foranyp > 0forwhich the expectation exists, where the last inequality follows from the Markov inequal-
ity. Choose 2 < p < p,/4. It then suffices to show that Fa,,”(6,) < oo. Now, by (52) and assumption C,
for some fixed C, < oo,

—2
[Eainp(%)SE( max [ ojm<z,u;%m)am(z,u;wgm)dF<u>dG<z>) "<

=1,y d,,
ex 2\ %
C'Q[E(max {Z P(& ) })
J

=1, exp(éjm
J’IYL
j,t=0
by assumption C. m

Lemma29. Lete,, beasinlemma 28. Forany €j; < €, sup,_g. 1K "64(0)) < 1+ v Me?,.
M

Proof. By the triangle inequality,
[FT540)] < 1K T{84(0) = So(O)H] + 1T {60(8) — S5(0)}] + 1 €]l (47)
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The first right hand side term in (47) is < 1 by lemma 30 and the last term is < 1 since XX ' is an
orthogonal projection matrix of the form B x something x B'. Finally, note that the middle term
squared is bounded above by Z H@@ Dy Somll 160 — 6> O

Lemma 30. Lete¢,,beasinlemma 28. Then

max | Sup Ny [55(6) = G (6) + £,25510: G (0)} L5 (6. B0 (61} < M.
m=1,..., M@G@

Proof. We first obtain results for fixed m and use lemma 53 with f=< m/Nyand f =L, /N, . Since
£ isconvexind,, on ©; with probability approachingone, (i) is satisfied. Because £ m/ N, isani.i.d.
mean of convex dlfferentlable functions, the remaining requirement of lemma 53 are straightforward
to verify for p,, = p,,, = N,'/? and pgn = 1. Finally, note that for any random sequence { 4,, } and
anye > 0,P(max_ | A, >¢) < Z P(A,, > ¢). Since there are only finitely different types of
markets (J,, < Jby assumption D), un1formity of P(4,, > ¢) over m can be obtained by a finite sum
over all possible values of .J, ,. O

Lemma3l. Vo€ O : X 6(0)] < X 6%(0)|.

Proof. We have
SUKTEO)12 — KT FO)I) = [246,5(0)) — 2{0,54(0))] + [£16,55(6)} — £16,560)}] <0

because d minimizes 2 and 6 minimizes £. O

F.3.2 07 as a process indexed by 6”. Define 67(¢") = arg min, Q{67,0",6%(0%,6")}, let p, =

VNx + M. Py = V/NxA2 + M, and for a,b € {67,0"} define O, = Q,, — Q.54 Qs and g, =
0, — Q,,0710,.

a

Lemma 32.

sup p2|0%(6¥) — 05(0”) + 02(6¥)3.(0")| <

ove{0v:30=:(0=,0v)€0: }

where O, _(0¥) = Q,_[0Z(0), 0", 65 {60%(6"), 0"} and likewise for g, (6" ).

Proof. The proof is similar to that of lemma 30 except that we need not establish uniformity in m. So
we omit a proof and only note that O _ is the Hessian of {07, 6", 6§}(6%, 6") } with respect to #* because
8,708 = —5,1Q;, by the implicit function theorem and that §_ is the gradient of Q{6%, 6", 63(6%,6")}
with respect to 6%. O

F.3.3 Approximation for o — 0y. Let
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Zzz 'Zzu Zzé
Z = _szllb = Zuz ’Zuu ZV§ ) (48)
Z6z Zéz/ Z66
with
Zzlﬁ = _(sz - QzVQ;}Quz)il [I _QZVQ;I} _<Qz6 - QZVQ;VIQWS)QE;] ’
Zzﬂl) =—(9,, — QVzQ;zlgzu)_l [_QuzQ;zl I —(Qs— QVzQ;;QZ(S)Qg&l] ’

25 = =053 (UoZay + [0 0 1)),

where everything is evaluated at ¢,. Let further p, = /Nx+ M, p, = VNx\2+ 1M, p,, =
min(p,, \/N,,),andlet Z = 9,2 with

Tofe. 00
q, = : V I /p : — Idz /pz 0
v ' ' NI 7 ’ 0 I, /p,
: . . 0 v
0 e 0 1

Write Qeg = 9,9y and let similar symbols be analogously defined.
Lemma33. p, = v/Mbylemma25and 0" — 0% — 2,,,Q, () = p;, .

Proof. We first show that

0 =05 +(Q, — ©,.0:10.,) 7 (9, + 0, {8°(05) — 05(6)} + 2,102 (8) — 65 (8)} ) ~ 9,2, (49)

where all {2’s and O’s are evaluated at the truth. The proof of (49) is analogous to that of lemmas 30
and 32 except that there is no uniformity issue here. Since this proof is simpler we omit it, except to
note that it is based on the expansion

0= Q,[6",6°(6),0°{6%(6"),6"}] ~

0+ (0 + Q.00 05(05) + 2,500,708 (80) + 70 (60,) 0 05(65)} ) (B — )
QUD_QVZQ;;QZV

+ (. + Q5952105 (00)){0°(05) — 05(05)} + Q,5{0%(8) — 65" (6) },
Q

vz

where all right hand side 2, s are evaluated at the truth. Note that 9,08 = — Q51 Qs and 9,,705 =
—0.10  byapplying the implicit function theorem to the first order conditions that define §{(¢) and
6% (0"). Rearrange to obtain (49). The lemma statement then follows from applying lemmas 27 and 32
and the delta method. O
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F.4 Step two of asymptotic normality

Define P = Py —Pp x =KX andP =Pp— Py =KX, where X = E(X | B),
Qyg = E(Lgg — Los L8 Lsp | B) + E(LgsL3d | BYPgK K PRE(L54 Lsg | B),

let 2 be defined as 2 but with the O’s replaced with O’s and let Z beas 2 with Q458254 replaced with
E(LysL54 | B). Then define

A=Z"N"DP O =B KK ZysN D Dy = ME(ZL,,2" | B) + 2ysKK 25 A

2—1/2 ) - A d
Lemma3d. D, AQ L (10),(1,) — N(0, ).
Proof. Follows from lemmas 35 and 36. O

F.4.1 Normality.

/24 /5 A 5 T 4
Lemma35. D, ANZLy+ 2ys KK ) — N(0,1).
Proof. Uselemma49withA:ZTATD Y2andC = BY XK' 2 (;ATZ) 12, O
Lemma36. D,"/*AQ} ()R, (8) — D P A(ZL, + 2 KK T€) <
Proof. Follows from lemmas 38, 39 and 43. ]
Lemma37. D, 1/ZA(Z — Z)ﬁw < 1L

Proof. Bylemma 40, part (e),

E{ID,°AZ = 2) 27| J} = r(DF'A(Z — 2) Ly (2 - 2)TAT) <
_ I 0 12,9 10 I 0
tr{ DA : outvo + AT <1 O
— Q55 Qs 0 0 0 55 Q5 0

Lemma 38. @X1/2A(Z¢JJCJCT — EMJZJZT)&’ < 1.

-1
vy

Zngw@ + I 0
0 0

Proof. There are three components: (a) D, 1/2A(Z¢5 — Zw)ﬂ(j( ¢ < 1; (b) D, 1/QA(ZM —
Zw)ﬂ(ﬂCTg < 1;(0) D, 1/2AZM(JCJCT KK)E < 1. We omit showing (a) since the proof is similar
to that of lemma 37. For (b), note that X X' = PBJCJCTPB, < 1/vV/M, A (Zw ZM)B < VM
(bylemma43), B* XX 'Bt" < (B'B)' ~1/M,and B'¢ ~ \/M such that the left hand side in re-
sult (b)is < M~ Y2MY2 M~ M'/? ~ M~1/? < 1. The arguments for (c) are similar except that now
we use
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BY (XX —XX")(BY) =
(BTB)*l(BTX{XTB(BTB)*lBU‘(}*IXTB—BTX{XTB(BTB)*1 B X}y 'x' B) (B'B)"' < M3 O

Lemma39. D, *AQL (o) () — Dy AAQL (1) (1) < 1.
Proof. Follows from lemma 44. O
F.4.2 Removing Endogeneity from 0.

Lemma40. (a) ZMQW—H < 1; (b)Zwa =0; (C)ZM)QW = —anlﬂ(;@(zwﬂw—kl); (d) ZM,QM—F
I=0;(e)

. I 0 |Z2gpQypo+1 0

I+2Q,, = . 0w tyo +

Proof. Tedious linear algebra shows that the left hand side in (a) is

Q._—0_,0,10 )1 0 Q0_—0,0%'0 0 —0Q 010
I . zZz zV vv vz >< zZz zV vv vz zZV zZV vv vv
0 (QVV_QZ/ZQ;;QZV>71 Quz_’@vzg_zzlgzz ’Ql/l/_’él/z _;,zl’Qzu

Apply lemma 41. Showing results (b) to (d) then just entails multiplying out the matrices and result (e)
reformulating. O]

Lemmad4l. (a) 599 ~1; (b) éee - Q:ee <L
Proof. First(a):

_ _ T — T
Doy = Lo — LosLs5 Lo+ LosLag K1+ K L K)THK L5 Lsg =
(Loo — LosLss Ls0) + Los L5 LssL55 Ls9, (50)

by lemma 42. The second right hand side term in (50) is ~ M by condition (f) of assumption F. Now,
the first right hand side term in (50). Note that £, > £§2‘1‘Z and hence 5;11& < ,55122_1, which in turn
implies (using partitioned matrices) that

-1 —1
1 . I . . : .

Thus, Oy > 9, (L1e— £mic £mie—1 gmic 4 17 T)q, > 1, byassumption G. Sowe have shown that Oy, = 1.
We now show that it is < 1, also, for which it remains to be shown that 9, (L9 — L5 L55 Ls9)dg < 1.
Since L3¢ — Lac gmac—l pmac — (), we have

9p(Lgp — Lo5L55 £50)Tg = g (Lha¢ — LGac L35 L59) 9
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4 qeﬁmaC£mac 1’531:31066_61 zaeqe o qeﬁ‘r’%acL'ggaczgneiCqG

<

DN | —

Iy ((ﬁrenéc + L5i0y7 0 + 00 Lo + Dp8 ' L550,70)
+ (L3 4 Lmieg,: gmac 4 goomacT Lo + a(,amacuzééaeram)) 9y < 9p LRy, < 1,

by assumption G, where the penultimate inequality follows from the theory of partitioned matrices.
Now result (b). First,

99{ (Lo — LpsLs5 L50) — L9 — Lo5L 55 L0t Lp

M
= > Y {(L o0 = Cin05CmssCmss) = Cmos — LomosErmssEmsotTo < 1,

by a weak law of large numbers for triangular arrays, e.g. Davidson (1994, theorem 19.7). Now,

_ T A— Al ,—
9p(Lps Ly KK L5 Lsg— L5 Lsg KK L8 L59)9p,

because XX = PpKK ' Py, Py = BB, (L5450 B — £454;4B) < M by a weak law of large
numbers, BY XX BT < M1, and

BHAKX —KK )BT = (BTB)*l(BTX(XTPBX)*1XTB—BTX(XTPBX)*1XTB>(BTB)*l <MY

since B' (X — X)/M < 1. O
Lemma 42. JCTﬁgélj( < 1.

Proof. The trace of the left hand side is

(KPRl Ppk) = { Z B, L LB, BTB)—lBTJCJCTB} <M UMM 'xM=1.
O

Lemmad3. { L, 55 — E(LpsL58 | B)}B < VM.

Proof. Take any linear combination, square, and take expectations to obtain the square of the promised
rate. O

F.4.3 Estimated covariance matrix. Let fm be an element of fm% — ﬁm%ﬁ;ﬁ; 6£Am59.
Lemmadd. D,'D, — I < 1.

Proof. If A selects only elements of § then this follows from lemma 45. For §’s the proof isanalogous. [J
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Lemma 45. éee — .@99 < 1.

Proof. The proof follows the same steps as that of lemma 41 with the main difference that now
63},%{9, 5ma°( 0)} — £ma°{9 (5“‘“( )}ﬁmaC L1, 5‘““( )}zmaC{e 6ma°( )} = 0 for all § and noting that
by lemma 46, qe(zg;%{e,a 0)} — £macf §5(0)} L1410, 5(0)}Lmac {0, 5(@)})% < 1. O

Lemmads. 32" [/, {0.6,,(8)} —/,,{0.57(0)}] < o3

Proof. Using arguments similar to those in lemma 27, it can be shown that

ol e L + B 00} - 135 + 35,0 - 00| <1

m=1
M
2 Font G | iy s £ins - £, (0 — )} — { £+ £y (8 — 0,)}]
m=1
A2
<D N B A+ x \/Z Ny X X2 + \/Z Ny XN < P2,
as asserted. O

F.5 Auxiliaryresults
Let X, be the matrix with rowsx ., and define [ X, | x = Z "z -

Lemma 47. All elements of the /-th partial derivative of log 7r im (1,,) with respect to ¢,,, are for all
¢ > 1bounded in norm by C, | X,,,[ %] 2 |, where C, is a constant independent of 2;,,,, z.,,,, ¥,

Proof. We show the result for ¢ = 1, where the result for higher order derivatives is a trivial extension.
First, for any &,

9j im> V)3 km Zim > d
85k 10g7T im (0 (5 ) (j — k) _ fajm(zzm V) kz.<z V)SDO/) V7

im
7ij

which is bounded above in absolute value by 1, because s, < 1.
Let %,,,,,, denote the variable that multiplies ¢} in the numerator of s ;,,, (2;,,, ; 0, 6,,, ), typically the
product of an element in 2;,,, and an elementin z;,,. Then

70



1V )3em \Zim d
692 logﬂ' im (0 5 — ijk Z%Ztmk m( Zm V) t (Z V)@(”) 14

Zim ’
Tim
where the ratio is bounded above by one. Finally, assume without loss of generality that the regressor

multiplying 0} is 2 ;,,,,.v,.Then,

Jm
Oy 0g (0,6, = i d S i ) S i i s o 0) b

Tjm. =0 jm 1)
51
Now, by integration by parts,
‘]m
x]mk f ‘4jm (Zim7 V>Vk30<y) dv Qv v f ‘djm<zim7 V)‘/)tm(zim7 V)SD(V) dv
Zim = VT ime — ek Z Limk Zim s
7ij t=0 7ij

where we can again use the fact that 4,,, is bounded above by 1 to achieve the desired bound. Repeat for
the second right hand side term in (51). O

Lemma 48. For some constant ¢ > 0 and all m,

exp(d,, ) '
o {1+ 27 exp(8y,,) )

Vi s V0,8, : A (aér (6, 5m>) >c min

Proof. LetS,, = diag(s,,). Then,
86T ﬂ-m(ev 5m) = /(Sm - dmdjn)¢ = /5%2(1 - 5;11/2‘/’779;5;11/2)5717{2(# (52)

1/2J 3 Sm Y251 — o $714 = J9m» sSuch that the right hand side

The smallest eigenvalue of I — &, m®m 9m

isbounded below by [ §,,4,,,¢ = diag( [ 4,,9,,¢), whose smallest eigenvalue is

exp(d,
min /]m40m¢> mm P(0;m)

. d-m<Z,V; 97 0)4 m<Z7V;970)¢(V) dG<Z>
j=1,...,J,, j=1,...,J,, {1 _|_Z m exp(étm)}Z/ J 0

The stated result then follows from assumption C. O

Lemma 49. Let {4, } be a sequence of matrices with a fixed number ¢ of columns and for which
A, € R%wm*¢be measurable with respect to 7,,. Define A, = [A,,., As,,] and

Aal A61 0 e O
A Agpy 0 Agy 5
: : . 0

AQM O cee O AéM
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Let further C € R%*¢ be measurable with respect to B. If for some ¢ > 1, (a) [E(AT@WA +
C'B'BC) = L) X0 S Bl Lyl = o(1);(0) X0 3207 EICT by &l = 0(1),
then A" £, +CTBTe S N(0,1).

Proof. Letv € R°with [lv| = 1. Then ¢y, = v (4, Ly, + 16 = 1CT 0" b;,65,) isa
martingale difference sequence if the observations are ordered by market and then by consumer,
ie. (i,m) = (Ny,1) precedes (2,2). By Davidson (1994, theorem 24.3), we need to show that

(1) ZTA:ZI Zi”{( 2 —[ECG) = 0,(1) and (2)max,,_; pmax,_y n [(m| = 0,(1). First(1). For
a generic constant C*, we have by the Burkholder and ¢, inequalities that

N,

M Nm € M Nm c
> > (3, -, ‘ —[E[E{!ZZ , —EC2,)| ‘g}gc*zz[aqu—[
m=1 i=1 m=1 i=1 m=11
which is o(1) by conditions (b) and (c). Finally, (2) follows from the Markov inequality. O

Lemma 50. Lemma 49 still holds if condition (a) is instead E(A" LA + C'B'BC)—T1<1.

Proof. T6¢ 5 N(0,1)and U — IthenUC = (U — I)¢ + ¢ 5 N(0,1). O

F.6 Genericlemmas

Lemma 51. For a generici.i.d. sample {z,(0)} of size n, let

e z;(0) — ()
s = Vi Jo—al o T

O, 9:90

Suppose that V§ € © : Ezy,;(0) = 0for compact © and Esup,_g, [z4g;(0)| < co. Thensup,_g |5, (6)] =
1.

Proof. Apply the mean value theorem to obtain that for some 6* € ©,

RN T
5.(6) = (5 5yent®) A (53

O, 9:90

By example 19.7 of van der Vaart (2000), E?: | Toi /+/n converges weakly to a Gaussian process and
hence sup,_ [zq;(0)[ < 1. O

Lemma52. If z ~ E()\) then Eexp(cz) = A/(A —¢) < coforallec < .

Proof. A change of variables shows that the density of y = exp(cx) is (A/c)y~ M1 (y > 1). O
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Lemma 53. Suppose that
(i) for some functions f , fand all «, BA (o) minimizes f (o, B) and B, («) is the unique minimizer
of f(«, 8) where fis continuous, the parameter space of «, 3 is the Euclidean product of their
respective compact parameter spaces, f converges to fin probability uniformly in «, 5;
(i) B(a)isasolution to

0= fala, B(@)}, (54)

and S («) is a unique solution to 0 = fs{a, By(a)};

(iii) forsome p,, < 1, supaHngl{a,60(a)}fﬁ{a,ﬁo(a)}H = o

(iv) for some open neighborhood R(«) of 5, («), SUP,, sen(a) (Amaxifas(@, B)}/ Amin{ fap(c, B)}) =
L

(v) forsome py,, < 1, sup, | f54{ev Bo(@)} Fas{as Bo@)} — I = pos

W) sup, o 155 (e B) faple, B) — 1] < 1;

(vii) for some p,,, < p,!, the third partial derivatives of fwith respect to 8are < ps,, uniformly in
a, f.

Then, sup_ |13() — Bo() + £33 e, By(0)} Fader, Bo (@)} = (2 + Prpsn):

Proof. We first show that 3(cr) — Bo(a)is O,(p,,), uniformly in o. Consistency, uniformly in «, follows
from (i). Applying the mean value theorem to (54) in (ii), we have for some 5*(«) that

Sl;pHB(a) — Bola)] = Sgpllfgé{a,ﬁ*(a)}fﬁ{a, Bo ()}

The p,, rate then follows from (iii), (iv) and (vi).
Now, premultiply (54) by fgﬂl {a, By(a)} to obtain by the mean value theorem and triangle inequality
that

Sgpl\ﬁ(a) — Bola) + fzh{a, Bo(a)} fa{a, Bo(@)}] <
SlipH(fgﬁl {o, Bo(@)} faa{ev, Bo(@)} = I)(B(e) = Bo())l| + O, (p3,) Sgp\lﬁ(a) — Bo(a)]?,

by (vii). Apply (v) and the p,, rate obtained above to obtain the stated result. O

G Monte Carlo Details

In this appendix, we provide additional details about the Monte Carlo specifications.

Mean product quality is specfied as ¢, = 8. + 5, asjlm + 62335,% + &m» Where the true parameters
for s are (—6, 1, 1). These were chosen so that the share of the outside good was roughly 20 percent
of the aggregate share, although this varies significantly from market to market. When exogenous,
z,, are distributed i.i.d. according to the standard normal distribution. The unobservable product
characteristic §,,, is distributed Pareto(2.3). We choose the Pareto distribution because the resulting
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shares mimic real world data where there are a few large-share products and many very small share

products.*?

1
im? zm

Consumers have observable characteristics, z;,, = (z; ) that are drawn independently from the

standard normal distribution. Preference heterogenelty based on observable consumer characteristics

is parameterized according to ;" Sim = 9Fpl xl 40522 where the true values of 6~ in the baseline

im jm Zim ]m7

specification are (1, 1). Altering 6* affects the strength of identification of #* via the micro data by

increasing the variation in utility across consumers.

Consumers have unobserved characteristics v;,,, = (u}m, Vi) Wthh are both distributed N (0, 1),
and the unobserved heterogeneity term is p ]”" =0l ]m + 0502 ]m, where the true parameters

for 6 are (1, 1) in the baseline.

For each specification, we draw data for 50 markets. Products in each market are independent of
other markets. We vary the number of products in each market with five markets each of {10, 12, 14, 16,
18, 20, 22, 24, 26, 28}. There are 100, 000 consumers (N, ) in each market. For the consumer level data,
we take a random sample of size .S,,, for the micro dataset. In the baseline case, S,,, = 1, 000. The micro
data contains a consumer choice, y,.,,, (a vector where y;, ;,, = 1if consumer i chose product j and zero
otherwise) together with their observable characteristics, z;,,,. In the baseline specification, average
share is roughly 2.1%, and the tenth percentile of shares is roughly 0.06%.

In specifying II for the CLER estimator, we include the following elements in the instrument vector b:

differentiation IVs following Gandhi and Houde (2020), where

a constant, product characteristics
k xk/ )

the (j,m) elementis d;,, = Zj,e ij(xjm Vm
Since d, = 6 > dz = 3, Il is overidentified for  and the extra exclusion restrictions are potentially

Jm?

, and the number of products in the market J,,.

useful to identify . We include the same I'Vs in the alternative GMM comparison.
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