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In this paper I propose three new estimators of nonparametric regres-

sion functions subject to weak separability (WS). The use of WS re-

duces the curse of dimensionality. WS nests other separability con-

cepts such as (generalized) additive separability ((G)AS). The advan-

tage of WS over (G)AS is that WS allows for interactions between

regressors whereas (G)AS does not permit any interactions. The es-

timators use marginal integration and are shown to have a limiting

normal distribution and a convergence rate which is the same as that

of an unconstrained nonparametric estimator of a regression function

of lower dimension. An attractive and unusual feature of two of my

estimators is that regressors can have arbitrary convex support and

that the integration regions can depend on the values of the remaining

variables. The estimators can be iterated and I show that under strong

assumptions further asymptotic efficiency improvements are possible.

The computation of the estimators is simple. The performance of one

of the estimators is studied in a simulation study.
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1 Introduction

This paper is concerned with the estimation of the (conditional mean) regression function

a(x) = E(Y1|X1 = x), (1)

for an i.i.d. sequence {(Xi, Yi)} with Yi ∈ R, Xi ∈ Rd. There is a plethora of estimation methods

for a. Fully parametric estimation methods offer fast convergence under the assumption of a having

a prespecified parametric form. At the other extreme, fully nonparametric methods allow for the

estimation of a subject to minimal conditions but the precision of unconstrained nonparametric

estimators deteriorates rapidly as d increases. In fact, the loss in precision relative to estimators of

lower–dimensional functions increases with the sample size. This is due to the curse of dimension-

ality (Bellman, 1961, p.97, see also Fan and Gijbels, 1996, p.264).

Since many regression functions commonly used in economics feature many regressors, uncon-

strained nonparametric regression is often not an option. It is hence necessary to impose restrictions

on a. One possibility is to allow a to be nonparametric only in a subset of the regressors and to

specify a parametric form for the remaining ones. Examples are the partial linear model of Robinson

(1988) and single index models.

An alternative possibility is to impose separability conditions. Strong or additive separability1

(AS) assumes that a takes the form

a(x) =
D∑
j=1

gj(xj), (2)

with x1, . . . , xD nonoverlapping subvectors of x ∈ Rd and D ≤ d. Let x0 denote the point at which

a is to be estimated. Then AS reduces the dimensionality because for the estimation of gj, ‘close’

pertains to the distance between the subvectors xj0 and Xj
i , not between the entire vectors x0 and

Xi. The standard assumption in the literature is that the dimension of xj, dj, equals one for all

j = 1, . . . , D, i.e. the xj are scalars. The dimensionality of the problem is then reduced from d to 1.

Additively separable models can be estimated by nonparametric series regression estimation (e.g.

Andrews, 1991), by backfitting (Friedman and Stützle, 1981, Breiman and Friedman,1985) and by

marginal integration (MI) (Linton and Nielsen, 1995 and Tjøstheim and Auestad, 1994).

MI estimators work by integrating an unconstrained nonparametric estimator â over all dimen-

sions not pertinent to a particular (sub)function. For instance, to estimate gj one can integrate

1See in this context Stone, 1985.
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â over x−j, a vector whose elements are those of x except those in xj. Although MI estimators

of AS models are themselves not fully efficient, their efficiency can be improved (e.g. Fan, Härdle

and Mammen, 1998). Linton (1997) has shown that using MI followed by a single backfitting step

achieves full efficiency.

Generalized additive separability (GAS) (e.g. Hastie and Tibshirani, 1980 and Stone, 1986)2

assumes that

a(x) = m

(
D∑
j=1

gj(xj)

)
. (3)

To economists GAS is a particularly attractive alternative to AS in the context of limited dependent

variable models. Consider for instance the binary choice model,

Y ∗i = a∗(Xi)− Ui, Yi = I(Y ∗i ≥ 0), (4)

with I the indicator function. Then a(x) = m
(
a∗(x)

)
, with m the distribution function of the error

Ui and a∗(x) =
∑D

j=1 g
j(xj).

If the link function m is known then a can be estimated subject to (3) using the estimation

method of Linton and Härdle (1998). Linton (2000) proposes a fully efficient estimator of an

important subclass of such GAS models. Horowitz (2001) derives an MI estimator of a subject to

the GAS assumption which does not assume that m is known.

A third separability assumption, weak separability, is used in this paper. The term ‘weak sep-

arability’ is due to Goldman and Uzawa (1964), although the concept was introduced by Leontief

(1947).3 My definition, as worded in definition 1, imposes some monotonicity conditions in addition

to the weak separability restriction per se.

Definition 1 A function a is weakly separable (WS) in x0, x1, . . . , xD if scalar–valued functions
m, g1, . . . , gD exist such that for all x ∈ Rd,

a(x) = a(x0, x1, . . . , xD) = m
(
x0, g1(x1), . . . , gD(xD)

)
, (5)

where m is increasing in g1, . . . , gD and each gj is increasing in its first argument xj1. The subvectors
xj, j = 0, . . . , D cannot overlap and have dimension dj, with d0 ≥ 0, d1, . . . , dD ≥ 2, D + d0 ≥ 2.

WS hence reduces the dimensionality of the problem to dm = max(d0 + D, d1, . . . , dD), as

opposed to 1 if a is additive in individual regressors. Therefore the dimensionality of the problem

2Generalized additive separability has a much longer history in economics, albeit without the qualifier ‘generalized’.
3Another early reference is Strotz (1957).
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increases no slower than
√
d. It is possible to construct a nested version of (5) which reduces

the dimensionality to 2, regardless of d, but the estimators in this paper are only appropriate for

functions a that satisfy (5). The requirement that the groups be nonoverlapping is restrictive. A

still weaker forms of separability, which has not been used in this context, is latent separability

(Blundell and Robin, 2000).

Under WS the role of regressors depends on the group to which they belong, whereas under

(G)AS they are treated symmetrically. In order to exploit the benefits of WS fully, one hence needs

to have some prior information to create a reasonable grouping of regressors.

The most obvious limitation of (G)AS is that it does not allow for interactions between regressors.

WS does allow for such interactions, albeit subject to restrictions.4 Interactions between regressor

variables can be important as the following four examples demonstrate. The first example relates

to returns to education. In the most narrow returns to education model (Mincer, 1974, chapter 2),

the difference in expected log earnings between two individuals with the same level of experience x0

depends only on differences in characteristics z = [x1, . . . , xD]T such as schooling and demographics,

but not on the experience level itself.5 Then returns to education would be additively separable

in x0, z, i.e. a(x) = m(x0) + g(z). With AS, g itself must moreover be additively separable in

the various schooling and demographic variables. For GAS, additive separability must hold for a

transformation of expected log earnings. However, empirical research (e.g. Lazear 1977) has shown

that the way that earnings vary with experience differs across educational backgrounds. WS allows

x0 to interact freely with one or more indices of the schooling and demographic variables.

Now consider the case in which a is a multiproduct cost function. There are economies of

scope (Baumol et al., 1982) if the cost of producing multiple products is less than the sum of the

production cost of each individual good. AS allows for no economies of scope and (G)AS only for

very specific ones.

Another potential application is that of hedonic pricing (Court, 1939) models. Cannaday (1994)

explains the prices of Chicago appartments in terms of a number of appartment characteristics

including the living area, number of bedrooms and bathrooms, amenities, location, view and re-

strictions on pet ownership. Although Cannaday uses a regular linear regression model, which is

trivially additively separable, there are arguments for a WS structure. Under AS the value of an

extra bathroom is independent of the number of bedrooms. Moreover, the value of bedrooms and

4See Blackorby et al. (1991) for a lucid discussion of the various forms of separability.
5I thank David Green for this example.
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bathrooms is under AS assumed independent of the location of the appartment and its size. WS

assumes the existence of indices — perhaps ones for size, amenities, location and regulations —

which can freely interact with one another.

Such limitations are not restricted to models with continuous dependent variables. In binary

choice models, for instance, the same issues arise. If the dependent variable is the mode of transport

chosen to get to work (as in e.g. Train, 1980, and Horowitz, 1993) then the regressors can include

variables relating to the time and inconvenience a particular mode of transport entails, its cost,

the availability of autos and the number of drivers in a household, and the respondent’s household

income.6 If, for instance, the disutility of changing buses twice is the same if the total travel time

is 10 minutes as when it is an hour, then the variables representing the number of bus changes and

total travel time can be additively separated from one another. If not, then a∗ in (4) cannot be AS

and a is then not GAS. Moreover, even if a∗ is AS, a is only GAS if the Ui’s are homoskedastic.

WS, on the other hand, does allow for some restrictive forms of heteroskedasticity.

It is possible to introduce some interaction into (G)AS models by allowing the xj to be vector–

valued. Variables that one wants to interact can then be gathered in the same xj vector. However,

most theoretical results do not support vector–valued xj. Moreover, the dimensionality of the

problem is then the same as that of the maximum of the dimensions of the xj vectors, which

may not be less than the dimensionality under WS. Finally, under the vector form of (G)AS no

interactions would be allowed between elements in different xj–vectors, which may necessitate the

use of bigger groups than in the case of WS and hence a smaller degree of dimension–reduction

than could be achievable under WS.

The choice of the type of separability to impose, if any, ultimately involves a trade–off between

bias due to misspecification and a greater variance because of the greater dimensionality. On this

scale WS is located somewhere between GAS and an unconstrained estimator. Since (2) and (3)

imply (5), the estimators proposed in this paper will consistently estimate any regression functions

a which satisfy (2) or (3). However, if the model is truly (G)AS then estimators that are specifically

designed to estimate (G)AS models are likely to be more accurate.

The proposed estimation methods use marginal integration. Unlike most estimators in this lit-

erature two of the three estimators I propose allow for arbitrary, possibly infinite, convex support.

General convex support could be useful because in many instances particular combinations of re-

6Train studies a multinomial choice problem rather than a binary one. Horowitz uses a semiparametric estimator
of a single index model with a more limited set of variables.

5



gressor values cannot occur. Indeed, I doubt that there are any 300 square foot appartments with 4

bedrooms. My approach uses comparison functions which allow the integration regions to depend

on the values of variables which are not integrated over. Instead of using my approach, one may be

able to circumvent the support problem by trimming out observations to make the support of X1

the Carthesian product of the supports of elements in the X1–vector. However, unless the support

of X1 is close to a hypercube, such a procedure can be very inefficient.

Like other work in this area I assume that the regressors are continuous. In most economic

applications continuity of all regressors is not a reasonable assumption. Since my estimator does not

use derivative estimators, it is probably possible to extend the results to allow for discrete regressors

(see Delgado and Mora, 1995). Equally problematic for many empirical economic applications is that

none of these methods (mine included) allow for endogenous regressors. Allowing for endogenous

regressors in nonparametric models is difficult and can only be achieved under strong assumptions

(see e.g. Florens and Renault, 2000, Newey and Powell, 1990, Newey, Powell and Vella, 1997, Pinkse

and Ng, 1998, and Pinkse, 2000).

As mentioned earlier, with (G)AS it is possible to improve asymptotic efficiency by the use of

a multi–stage procedure (Linton 1997, 2000). Indeed, it is then possible to achieve, what Linton

calls, ‘full oracle efficiency’, i.e. asymptotic efficiency is as good as if the remaining components

were observed. Under strong conditions a similar result applies under some circumstances for one

of the WS estimators proposed here. The procedure involves combining iterated and noniterated

WS estimators.

There are other uses for iteration. Because of the separability constraints, a can be estimated

consistently in some regions outside of the support of X1 provided that separability holds globally.

It may hence be possible to use estimators that require strong support restrictions in a second step

after a is first estimated using my method, provided that a is known to satisfy WS.

The outline of this paper is as follows. Section 2 introduces the three new estimators. The main

result is contained in section 3, which is followed by a discussion of ways to recover the structural

components of a and the benefits of iterating the procedure. A simulation study of the properties

of the estimators is in section 5. The appendix contains all proofs and derivations.
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2 Estimation Methods

2.1 d0 ≥ 1, D = 1

I propose three closely related estimation methods which I for ease of exposition introduce for the

case d0 ≥ 1, D = 1. The formal results are in section 3 and apply to any regression function

satisfying definition 1. Thus,

a(x) = m
(
x0, g1(x1)

)
. (6)

Recall from definition 1 that a is monotonic in g1 and g1 is monotonic in x1
1. Then for any positive

function λ∗ for which the integral exists,

g1(x1) =

∫
a(x)λ∗(x0)dx0 =

∫
m
(
x0, υ∗

(
g1(x1)

)
dx0,

for some monotonic function υ∗. Since m and g1 cannot be separately identified from (6), one

needs to impose identifying restrictions in order to estimate g1,m individually, but not in order to

estimate a. Separate identification of m, g1 can be achieved by fixing λ∗. This issue is discussed in

section 4.1. Here the focus is on the estimation of a at some point x0 = (x0
0, x

1
0).

Note that a(x) = a(x0) whenever x0 = x0
0 and g1(x1) = g1(x1

0) or equivalently when x0 = x0
0 and

g1(x1)− g1(x1
0) = 0. A possible estimator could then use a comparison function χ1 like

χ1(x1) = χ1(x1, x1
0) = g1(x1

0)− g1(x1) =

∫ (
a(x0, x1

0)− a(x)
)
λ∗(x0)dx0. (7)

χ1 can be estimated by replacing a in (7) with a fully unconstrained Nadaraya–Watson (NW)

(Nadaraya, 1965, and Watson, 1965) kernel regression estimator. The NW estimator requires the

practitioner to choose a kernel k, i.e. an even function which integrates to one, and a bandwidth h,

whose choice depends on the sample size.7 If the argument of k is a vector ξ then k(ξ) =
∏dξ

j=1 k(ξj),

where dξ denotes the dimension of ξ. Let moreover K(t) = k(t/h)/h and Ki(x) = K(x−Xi). Then

the NW estimator is

â(x) =

∑n
i=1 Ki(x)Yi∑n
i=1 Ki(x)

, (8)

with n the number of observations. χ1 can then be estimated by

χ̂1(x1) =

∫ (
â(x0, x1

0)− â(x)
)
λ∗(x0)dx0, (9)

7For ease of notation the bandwidth is chosen to be the same in every dimension. This is not necessary.
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Because â is integrated in several dimensions in (9), the dimensionality of the problem of estimating

χ1 is d1 as opposed to the dimensionality of the problem of estimating a, which is d. As a result,

χ̂1 converges faster than does â. In fact, the convergence rate of χ̂1 is generally the same as that

of a Nadaraya–Watson estimator of dimension d1 using the same input parameters k, h. It is then

possible to construct an estimator of a(x0) that is more efficient than â(x0), namely

â∗Sχ(x0) =

∑n
i=1 K0(X0

i )K
(
χ̂1(X1

i )
)
ΛiYi∑n

i=1 K0(X0
i )K

(
χ̂1(X1

i )
)
Λi

, (10)

with K0(X0
i ) = K(x0

0−X0
i ) and where the Λi–factors allow the practitioner to trim out or give less

weight to particular observations. If the χ1–function were known, â∗Sχ would simply be a Nadaraya–

Watson style estimator of a (d0 + 1)–dimensional regression function. Here the convergence rate of

â∗Sχ is that of a Nadaraya–Watson estimator of a max(d0 + 1, d1)–dimensional function using the

same input parameters. Since max(d0 + 1, d1) < d0 + d1 = d a dimension reduction is achieved. â∗Sχ

uses generated regressors. Other examples of the use of generated regressors in a nonparametric

context are Ahn (1997), Horowitz (2001) and Rilstone (1996).

The estimator â∗Sχ is straightforward to implement, although it does require numerical integra-

tion. However, â∗Sχ has two problems. It does not allow for an infinite integration region (i.e. λ∗

must be zero outside some bounded set) and, more importantly, it assumes that the integration

region is independent of the variables that are not integrated out. The problem with a constant

integration region is that â does not estimate a consistently outside of the support of X1. If the

support of X1 is not the product of the supports of X0
1 and X1

1 , then the integration region has to

be limited to values x0 for which x = (x0, x1) is in the support of X1 for all x1 in the support of X1
1 .

The convex support problem can be fixed by using a weight function λ̃ (in lieu of λ∗ in (7))

which can depend on both x1 and x1
0, i.e.

χ1(x1) =

∫ (
a(x0, x1

0)− a(x)
)
λ̃1(x0, x1)λ̃1(x0, x1

0)dx0,

χ̂1(x1) =

∫ (
â(x0, x1

0)− â(x)
)
λ̃1(x0, x1)λ̃1(x0, x1

0)dx0. (11)

With (11), a practitioner can choose λ̃1 in such a way that the integration region for each (x1, x1
0)–

pair is the set of values x0 for which both (x0, x1) and (x0, x1
0) belong to the support of X1. I have

however been unable to show that my results hold for

âSχ =

∑n
i=1 K0(X0

i )K
(
χ̂1(X1

i )
)
ΛiYi∑n

i=1 K0(X0
i )K

(
χ̂1(X1

i )
)
Λi

, (12)
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when the integration region in (11) is infinite.8 Moreover, even when λ̃1 is positive only on a

bounded set, the estimator âSγ proposed below has the same asymptotic properties as âSχ, albeit

for a different choice of λ–function. I nevertheless provide theoretical results for âSχ, also, since

it allows for individual estimation of the g1 and m–functions subject to identification restrictions,

unlike the two estimators proposed below.

I now propose two estimators which do allow for infinite integration regions. They use compar-

ison functions γ1, π1 defined by

γ1(x1) =

∫ (
a(x0, x1

0)− a(x0, x1)
)
f(x0, x1)f(x0, x1

0)λ1(x0, x1)λ1(x0, x1
0)dx0,

π1(x1) = γ1(x1)/δ1(x1), with δ1(x1) =

∫
f(x0, x1)f(x0, x1

0)λ1(x0, x1)λ1(x0, x1
0)dx0,

where f denotes the density of X1. γ1 and π1 can be estimated by

γ̂1(x1) =

∫ (
â(x0, x1

0)− â(x)
)
f̂(x0, x1)f̂(x0, x1

0)λ1(x0, x1)λ1(x0, x1
0)dx0, (13)

π̂1(x1) = γ̂1(x1)/δ̂1(x1), with δ̂1(x1) =

∫
f̂(x0, x1)f̂(x0, x1

0)λ1(x0, x1)λ1(x0, x1
0)dx0. (14)

Unlike γ̂1, π̂1 corrects for the fact that integration regions are different for different (x1
0, x

1)–values.

This is important because γ1 can be close to zero, not only because a(x0, x1) is close to a(x0, x1
0) but

also when δ1(x1) is small. The second step estimator will then give too much weight to observations

in the tails of the distribution.

π̂1 corrects this problem, but has the problem that it may have a greater (small sample) variance

than does γ̂1 because of the denominator term. âSγ, âSπ are identical to âSχ defined in (12) except

that χ̂1 is to be replaced with γ̂1, π̂1.

A related problem with all three estimation procedures a is that for some values of x1, x1
0, δ1 is

very close to or equals zero. This occurs for instance when the support of X0
1 and the first element

of X1
1 is a diagonal strip and x1

1 and x1
01 are far apart. Using observations i for which δ1(X1

i ) is

close to zero can make the second stage estimator unstable. I therefore use the Λi’s to trim out

such observations in the second stage.

2.2 General Case

The estimators for the general case are similar to that for the case d0 ≥ 1, D = 1, but are notationally

more cumbersome. Let as before xj denote the j–th subvector of x and recall that x−j denotes the

8This is because showing uniform consistency of â on an infinite support is difficult under general conditions.
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vector x without xj. Further, z = x−0, zj = xj and z−j is the z–vector without xj. For any function

ω : Rd → R, ωj is the same as ω, except that the arguments are rearranged, i.e.

∀x ∈ Rd : ωj(x−j, xj) = ω(x).

It is possible both to use the same function λ throughout and to use different functions for different

values of j. From hereon I will assume there is one function λ, but all results go through identically

when different λ–functions are used.

Let γj(xj) =
∫ (
aj(x−j, xj0)−aj(x−j, xj)

)
f j(x−j, xj0)f j(x−j, xj)λj(x−j, xj0)λj(x−j, xj)dx−j and let

δj, πj be similar generalizations of δ1, π1.

Equations (11), (13) and (14) generalize to

χ̂j(xj) =

∫ (
âj(x−j, xj0)− âj(x−j, xj)

)
λ̃j(x−j, xj)λ̃j(x−j, xj0)dx−j, setting λ = λ̃/f,

=

∫ (
âj(x−j, xj0)− âj(x−j, xj)

)
f(x−j, xj)f j(x−j, xj0)λj(x−j, xj)λj(x−j, xj0)dx−j (15)

γ̂j(xj) =

∫ (
âj(x−j, xj0)− âj(x−j, xj)

)
f̂ j(x−j, xj)f̂ j(x−j, xj0)λj(x−j, xj)λj(x−j, xj0)dx−j, (16)

π̂j(xj) = γ̂j(xj)/δ̂j(xj),

with δ̂j(xj) =

∫
f̂ j(x−j, xj0)f̂ j(x−j, xj)λj(x−j, xj)λj(x−j, xj0)dx−j. (17)

The estimators of the WS function a are then

âSχ =

∑n
i=1 K0(X0

i , χ̂i)ΛiYi∑n
i=1 K0(X0

i , χ̂i)Λi

, âSγ =

∑n
i=1 K0(X0

i , γ̂i)ΛiYi∑n
i=1 K0(X0

i , γ̂i)Λi

, âSπ =

∑n
i=1 K0(X0

i , π̂i)ΛiYi∑n
i=1 K0(X0

i , π̂i)Λi

, (18)

with χ̂i = [χ̂1
i , . . . , χ̂

D
i ]T , γ̂i = [γ̂1

i , . . . , γ̂
D
i ]T , γ̂ji = γ̂j(Xj

i ), π̂i = [π̂1
i , . . . , π̂

D
i ]T , π̂ji = π̂j(Xj

i ),

Λi =
∏D

j=1 Λj
i and Λj

i = Λj(Xj
i ).

3 Main Results

I now state my assumptions for asymptotic normality of the estimators âSχ, âSγ, âSπ defined in (18).

Partition the vectors xj = [xj1, (xj2)T ]T , with xj1 a scalar and xj2 possibly vector–valued.

Assumption A {(Yi, Xi)} is an i.i.d. sequence with for some εµ > 0, E|Y1|4+εµ < ∞. The dis-

tribution of X1 is absolutely continuous. The conditional mean function a, defined in (1), satisfies

definition 1 and is increasing in x11, . . . , xD1.

The existence of moments greater than four is strong but not unusual. Let S =
∏D

j=1 Sj and let

S0 ⊂ Rd0 .
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Assumption B x0 is an element of S∗ = S0×S with Sj, j = 0, . . . , D open, convex and bounded.

For any j = 1, . . . , D and some practitioner–chosen nonnegative function λ,

δj(xj) = 0⇒ xj 6∈ S̄j, with S̄j the closure of Sj.

The support restriction in assumption B is weak. It requires that the probability that
(
X0

1 , g(Z1)
)

lies in a small neighborhood of
(
x0

0, g(z0)
)

is positive. If this restriction were not satisfied, it would

also not be possible to use the unconstrained estimator. Note that S∗ is not the support of X1.

Indeed, the support of X1 can be Rd and the regions of integration in the first step can be infinite,

also.

Assumption C Λ : Rd−d0 → R is nonnegative and positive only on S.

Definition 2 Wdξ,r is the class of functions ω : Rdξ → R for which ω’s r–th partial derivatives
exist and are bounded and continuous.

Let ν = af .

Assumption D For some r ≥ 2, f, ν,Λ are boundedly integrable, λ is bounded and

∂2ω

∂(xj1)2
∈ Wd,r, ω = f, ν,Λ, λ; j = 1, . . . , D.

The variance function σ2(x) = V (Y1|X1 = x) is once partially differentiable.

In most cases, the existence of four derivatives in most directions and six in some is sufficient for

âS•, • = γ, π, χ, to have the same rate of convergence as an unconstrained nonparametric kernel

estimator of a regression function with dm regressors using the same choice of kernel. When fewer

derivatives exist, then âS• usually still converges faster than the fully unconstrained estimator â,

but the degree of dimension reduction attainable is then less.

It is possible to choose a function Λ that is many times differentiable and positive only on an

open convex set. An example is the function Λ(t) = Φ̄
(
1/(1−||t||2)

)
I(||t|| < 1) with I the indicator

function and Φ̄ the standard normal distribution function.

In section 2 I mentioned that for the results relating to âSχ it is necessary to restrict λ. This

condition is expressed in assumption E, which does not apply to âSγ, âSπ.

Assumption E λ is positive only on a bounded set, on which f is bounded away from zero.

11



Assumption F The kernel k is a product kernel, i.e., k(ξ) =
∏dξ

t=1 k(ξt) for some r + 2 times

differentiable r–th order kernel k with exponentially decreasing tails, i.e.
∫
k(t)dt = 1,

∫
k(t)tsdt = 0,

s = 1, . . . , r − 1, and
∫
|k(u)(t)ts|dt <∞ for any 0 ≤ s <∞, u = 0, . . . , r + 2.

Assumption F imposes strong conditions on the choice of kernel. Since the kernel is chosen by the

practitioner, strong conditions on its choice do not limit the range of potential applications. For

any r, there are kernels that satisfy assumption F. In particular, for r = 4, the scalar–argument

kernel

k(t) = (3− t2)φ(t)/2, (19)

with φ the standard normal density, satisfies assumption F.9

Let for some ε > 0,

ch = max
(
2d−min(d1, . . . , dD), dm + 4

)
+ ε.

Assumption G

n−1h−ch = o(1), nh2r+dm = O(1). (20)

Assumption G is easy to satisfy. To obtain convergence at the optimal rate, one should choose the

bandwidth h ∼ n−1/(2r+dm) such that the conditions in (20) hold when r > (ch−dm)/2. For instance,

when d = 5, D = 2, d0 = 1, d1 = d2 = 2, dm = 3 and (ch − dm)/2 = (8 + ε− 3)/2 = (5 + ε)/2. Since

ε can be chosen arbitrarily close to zero, r = 4 suffices.

The same bandwidth is used in both stages of the estimation procedure. This is not essential

and indeed generally not advisable.

I now proceed with the statement of the main result. Let q be one of γ, π, χ and let f+
• denote

the joint density of
(
X0

1 , q(Z1)
)

conditional on Λ1 > 0. Let for any function ω

∆•(ω) = E
(
ω(X1)Λ(X1)|X0

1 = x0
0, g(Z1) = g(z0),Λ(X1) > 0

)
f+
• (x0

0, 0)p0, (21)

and ∆• = ∆•(1), with p0 = P (Λ1 > 0). Further, let for any function ω : Rd → R,

∆j
•ω(x) = ∆•

(
∂a
∂xj1

∂qj

∂xj1

(ωj · λj)(x−j, ·)Ψj
•

)
/∆•, (22)

9There is evidence that higher order kernels do not work well in samples of moderate size. An alternative technique,
which may be preferable in practice, is that of local polynomial estimation.
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where Ψj
χ(xj) = Ψj

γ(x
j) = 1, Ψj

π(xj) = 1/δj(xj) and (ω · λ)(x) = ω(x)λ(x). Let further ∆j
•ωt =

∆j
•ω(Xt). Finally, let ρn = n−1/2h−dm/2, ` = limn→∞ ρ

−1
n hr and let Bγ,Bπ,Bχ be some finite numbers.

Theorem 1 Let assumptions A–D and F–G hold. Then

ρ−1
n

(
âSγ(x0)− a(x0)

) L→ N
(
`Bγ,Vγ

)
, ρ−1

n

(
âSπ(x0)− a(x0)

) L→ N
(
`Bπ,Vπ

)
, (23)

and for • = γ, π,

V• = κdm

(
I(d0 +D = dm)V0

• +
D∑
j=1

I(dj = dm)Vj•

)
, (24)

with κ =
∫
k2(t)dt, and

V0
• = ∆•(σ

2Λ)/∆2
•(1), Vj• = fxj(x

j
0)E
((
σ1λ1∆j

•f1

)2|Xj
1 = xj0

)
, (25)

with fxj the density of Xj
1 and σ2

1 = σ2(X1) where σ2(x) = V (Y1|X1 = x).

If assumptions A–G hold then moreover

ρ−1
n

(
âSχ(x0)− a(x0)

) L→ N
(
`Bχ,Vχ

)
, (26)

with Vχ = Vγ.

To achieve the optimal rate of convergence, h ∼ n−1/(2r+dm), which results in a convergence rate

of n−r/(2r+dm). If the bandwidth sequence is thus chosen, the asymptotic bias is nonzero. The

asymptotic bias can be removed by undersmoothing, i.e. choosing a bandwidth sequence which

goes to zero at a rate faster than the optimal rate. Note also that if d0 + D > maxj=1,... ,D dj,

then the âS•–estimators have the same asymptotic distribution as the NW estimator with known

g1, . . . , gD. In other cases the Vj•–terms contribute to the asymptotic variance.

The asymptotic variance V• is estimable, as the following theorem shows. Let

∆̂•(ω) = n−1

n∑
i=1

K0(Xi, q̂i)Λiωi, (27)

and

P̂ j
t (x) = K0(X0

t , q̂
−j
t )K ′0(q̂jt )Λtλ

j(x−j, Xj
t ). (28)

R̂j
ωt(x) = P̂ j

t (x)Ψ̂j
•t
Yt − â(x0)

∆̂•
ω̂j(x−j, Xj

t ), for ω = ν, f, (29)

where Ψ̂j
•t = Ψ̂j

•(X
j
t ), with Ψ̂j

χ(xj) = Ψ̂j
γ(x

j) = 1 and Ψ̂j
π(xj) = 1/δ̂j(xj), and ν̂ is the numerator in

(8) divided by n.

13



Theorem 2 Let assumptions A–D, F–G hold. V• in (24) is consistently estimated by

V̂• = κdm

(
I(d0 +D = dm)V̂0

• +
D∑
j=1

I(dj = dm)V̂j•

)
, (30)

where V̂0
• and V̂j• are estimators of V0

• and Vj• defined in (25) and are given by

V̂0
• = n−1

n∑
i=1

K0(X0
i , q̂i)Λ

2
i

(
Yi − â(x0)

)2
/∆̂2
•(1), (31)

and

V̂j• = κ−djhdjn−1

n∑
i=1

(
n−1

n∑
t=1

(
Rj
ft(Xi)Yi −Rj

νt(Xi)
))2

(32)

If in addition assumption E holds, then Vχ is consistently estimated even when λj in (32) and (28)

is replaced with λ̃j/f̂ j.

4 Further Issues

4.1 Separate Identification of m and g1, . . . , gD

It can be of interest to obtain separate estimates of m and g1, . . . , gD. In section 2 I mentioned that

it was possible to achieve such identification by fixing the choice of λ∗ when using â∗Sχ. Doing so

will result in estimators of gj,m which converge at rates Op(n
−1/2h−dj/2) and Op(n

−1/2h−(d0+D)/2).

However, achieving identification by choice of an input parameter may be undesirable and can be

avoided. Here I propose two identification conditions which neither depend on the choice of an

input parameter nor on the distribution of the random variables. The two identification conditions

are motivated by the estimation of a cost function and can be replaced by similar conditions if such

alternative conditions are deemed more appropriate for a particular application.

The cost of producing x0 units of output when the vector of input prices is x1 is m
(
x0, g1(x1)

)
,

where g1 is the unit cost function. A natural identification condition, therefore, is

∀g1 : m(1, g1) = g1, (33)

i.e. the production of one unit of output costs g1. Since a(1, x1) = m
(
1, g1(x1)

)
= g1(x1), g1 can be

estimated by

ĝ1(x1) = âS•(1, x
1).

14



An estimate of m, m̂, can then be obtained by nonparametrically regressing Yi on X0
i , ĝ

1(X1
i ). It

can be shown that m̂ converges at a rate of Op(n
−1/2h−(d0+D)/2).10 Irrespective of the dimensions,

m̂ hence converges at the same rate as when the g–functions are known. The convergence rate of

ĝ1 is however slower than optimal if d1 < dm.

An alternative identification condition is

∀x11 : g1(x11, 1) = x11. (34)

Condition (34) does not afford a straightforward interpretation in the context of cost functions, but

could be replaced with g1(t, . . . , t) = t, which is implied by g(1, . . . , 1) = 1 and homogeneity of the

unit cost function.11 Two implications of (34) are that m(x0, g1) = a
(
x0, (g1, 1)

)
and that for any

function g1 which is a monotonic transformation of g1,

g1(x1) = g−1

(1)

(
g1(x1)

)
,

with g−1
(1)

the inverse of the function g
(1)

(x11) = g1(x11, 1). m can hence be estimated by

m̂(x0, g1) = âS•
(
x0, (g1, 1)

)
.

If the integration region is finite and independent of the values of the variables which are not

integrated over, then a monotonic transformation of g1 is g1(x1) =
∫
a(x0, x1)λ∗(x0)dx0, as we saw

in section 2.12 g1 can then be consistently estimated by (see Pinkse, 1999)

ĝ1(x1) =

∫
â(x0, x1)λ∗(x0)dx0. (35)

Let ĝ
(1)

(x11) = ĝ1(x11, 1). Assume without loss of generality that g1(x1) ∈ [0, 1] and that g
(1)

is

increasing in a neighborhood of [0, 1]. Let g−1
(1)

be the inverse of g
(1)

and let ĝ−
(1)

be some function

which satisfies (i) ĝ−(t) = 0, t < ĝ
(1)

(0), (ii) ĝ−(t) = 1, t > ĝ
(1)

(1), and (iii) for any ĝ
(1)

(0) ≤ t ≤
ĝ

(1)
(1) there exists some s∗ such that ĝ−

(1)
(t) = s∗ and for which ĝ

(1)
(s∗) = t. Then

ĝ1(x1) = ĝ−
(1)

(
ĝ1(x1)

)
,

converges to g1 at a rate of Op(n
−1/2h−d1/2). A proof of this result is in lemma 26 in the appendix.

10To establish this result would entail a tedious repetition of the same arguments as were made in the proof of
Theorem 1; to conserve space I have not done so.

11Note that if homogeneity itself is imposed efficiency achievements in addition to those possible with weak sepa-
rability are feasible. See Tripathi (1997) for a discussion of imposing such conditions in nonparametric estimation.

12The assumption can be relaxed by using an iterative procedure, i.e. by replacing â in (35) with âS•. See section
4.2 for a discussion of iterative procedures.
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The convergence rates with (34) are hence complementary to those with (33). If d1 = dm

condition (33) yields estimators which converge at an optimal rate and when d0 + D = dm it is

(34) which yields such estimators. Finally, both identification conditions above go through similarly

when D > 1.

4.2 Iteration

It is possible to iterate the estimator and, under certain circumstances, to improve the asymptotic

efficiency of the procedure by combining uniterated and iterated estimators. I demonstrate the

methodology using the simplest possible case, i.e. when q = χ, D = 1, Λ = 1, λ̃ does not depend

on x1 and X1
1 has compact support.13

The iterated estimator of a0 is then ˆ̂aSχ, which is defined as âSχ with χ̂1 replaced with

ˆ̂χ1(x1) =

∫ (
âS•(x

0, x1
0)− â(x0, x1)

)
λ∗(x0)dx0, (36)

Note that I use the unconstrained estimator â(x0, x1) in (36) because the fact that a(x0, x1) is

estimated is immaterial for the asymptotic distribution of âS•. Appendix A.11 contains a somewhat

heuristic derivation which shows that

ˆ̂aSχ(x0)− âI(x0) ≈ −
(
âSχ(x0)− âI(x0)

)
, (37)

where âI is the NW estimator with regressors X0
i , χ

1
i and ≈ means ‘up to terms which converge

faster than ˆ̂aSχ(x0)− a(x0) and âSχ(x0)− a(x0). Hence

âCχ(x0) =
(
ˆ̂aSχ(x0) + âSχ(x0)

)
/2 ≈ âI(x0).

Therefore if d0 + 1 = d1 combining iterated and noniterated estimators in the above–described

fashion removes the generated regressor component and the estimator subject to separability is

then asymptotically as efficient as if χ1 were observed. When d0 + 1 > d1 this had always been the

case and when d0 + 1 < d1, there are additional terms which impact on the limiting distribution.

The result does extend to the case when D > 1, but not to âSγ, âSπ regardless of the choice of λ

and it does not work for âSχ when Λ is not constant or indeed when λ̃j depends on xj. It is possible

that the methodology can be generalized to cover these cases, also, but such a procedure would be

complicated.

13These conditions do not quite match those of theorem 1, but the argument and derivations simplify considerably.
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5 Simulations

The simulation study compares âSπ to the unconstrained estimator â using the six models listed

below.14 I have chosen these particular models to highlight performance issues rather than concen-

Linear Yi =
∑d

t=1 Xit + Ui,

Probit–Like Yi = Φ̄
(∑d

t=1 Xit

)
+ Ui,

Product of Logs Yi =
(∑d0

t=1(X0
it)

2
)∏D

j=1

(
sgn(Xj

i1) log10

(
(Xj

i1)4 +
∑dj

t=1(Xj
it)

2
))

, if d0 > 0,

Yi =
∏D

j=1

(
arctan

(∑dj
t=1 X

1
it

)
/π + 0.51

)
, if d0 = 0,

Probit Yi = I(
∑d

t=1 Xit + Ui ≥ 0),
Flat Yi = 1,

Arctan–Power Yi =
(∑d0

t=1(X0
it)

2
)(1.5∗

(
arctan

(∑d1
t=1 X

1
it

)
/π+0.51

))···
, if d0 > 0,

Yi =
(

arctan
(∑d1

t=1 X
1
it

)
/π + 0.51

)(1.5∗
(

arctan
(∑d2

t=1 X
2
it

)
/π+0.51

))···
, if d0 = 0,

trating on models with obvious empirical relevance.

I used the Mersenne–Twister random number generator (Matsumoto and Nishimura, 1998)

because of its exceptional properties.15 In all cases are the regressors independent and have N(0, 1)–

distributions. The errors are always independent of the regressors and are N(0, σ2)–distributed for

σ = 1, 2. The linear and probit models are standard. The probit–like model was included to compare

performance when the systematic component of the model is bounded and indeed small relative to

the variation in the errors. The product of logs and arctan models were included to simulate

interaction terms. The arctan–power model does not reflect any model of interest in economics,

but is introduced to assess the sensitivity of the results to the choice of relatively familiar stylized

models.

In all cases λ was chosen equal to one and Λ was the function

Λ(x) =

(
1 + exp

(
e−1/

(
1−||x||2/(dC2

Λ)
)))

,

where CΛ = 4.16 The choice of Cλ was motivated by the results of preliminary experiments. A good

choice of CΛ is dependent on the scaling and distribution of the regressors.

14I attempted to make a comparison with the Horowitz (2001) estimator, but the computer program I wrote was
insufficiently fast to conduct large scale simulations.

15It apparently has a proven period of 219937 − 1, excellent distributional properties and is exceptionally fast.
16In the experiments, the choice of Λ was based on the entire vectors Xi, not just on Zi, as in the proofs.
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I used the Mersenne–twister random number generator. The number of observations was either

100 or 200, the number of regressors 3, 4 or 9.17

When the number of regressors was 3, d0 = D = 1, d1 = 2, when d = 4, d0 = 0, d1 = d2 = D = 2

and when d = 9, d0 = 0, d1 = d2 = d3 = D = 3. The number of replications was always 1,000. The

regression function was estimated at Xi, i = 1, . . . , n, and the results were aggregated across all i,

and across replications.

The MSE entry in the tables is 1,000 times the average mean square error across all observations

and all replications, MSE99 is the average mean square error over all replications, dropping the worst

1% in each replication and MDAE is the average median absolute error, where the average is taken

over all observations.

The aggregate results show that âSπ can be unstable. This is not surprising since I chose Λ, h to

be the same throughout and the estimator at points Xi at which Λ = 0 is then a weighted average

over observations that are far away from Xi. Moreover, at such points the denominator of âSπ

is likely to be close to zero and can even be negative because of the use of higher order kernels.

Nevertheless, if even 1% of points is dropped at each replication, âSπ frequently performs better

than does â, particularly when the error variance is large relative to the variance of the structural

part of the model. The results for d = 3 versus d = 4, 9 for the ‘product of logs’ and ‘arctan’ models

are quite different given that the nature of the models for d = 3 is different from the other two.

Aggregate results obscure the strengths and weaknesses of âSπ. As it turns out, âSπ performs

particularly well (relative to â) at those points x at which data are somewhat sparse but for which

there are relatively many i for which a(Xi) is close to a(x). It performs poorly at points that are in

the tail of the distribution, particularly so when there are few observations with similar regression

function values. In regions with many data points, both estimators perform well.

To illustrate the variation in performance across points, consider figures 1a–1d. In all cases I

used the linear specification and d = 3, d0 = D = 1. Data were generated as described earlier with

n = 100. I ran 1,000 simulations and estimated the regression function using âSπ at four different

points, each point corresponding to one of the four graphs. Along with the density of âSπ−a I have

plotted a normal density with zero mean and variance equal to the estimated variance of âSπ − a.

From figures 1a–1d, it is apparent that âSπ(x0) is biased downward when most of the data would

have regression function values that are less than a(x0) and upward if the converse is true. It is

17Speed of computation is not generally a constraint for individual data sets. Kim et al. (1999) propose a method
which improves the computational efficiency of AS estimator. I have not investigated the possibility of devising a
similar method for my WS estimators.
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likely that this problem would be mitigated when a version of âSπ using local polynomial estimators

instead of NW estimators would be used.18 The results also suggest that even in moderate samples

âSπ is approximately normal, although the results may be more favorable than would have been the

case had I used a highly nonlinear model for these experiments.

The most interesting aspect of this experiment, however, is a comparison of the variances. The

estimator variance is lowest at (0, 0, 0) since the regressor density f is highest there. Normally, the

estimator variances at (−1, 1,−1) and (1, 1, 1) would be comparable since f(−1, 1,−1) = f(1, 1, 1).

Note however that there are many more observations i for which a(Xi) = Xi1 +Xi2 +Xi3 is close to

a(−1, 1,−1) = −1 than there are such observations which are close to a(1, 1, 1) = 3. The estimator

variance at (−1, 1,−1) is in fact only a little larger than that at (0, 1, 0), despite the fact that

f(0, 1, 0)/f(−1, 1,−1) = e. This suggests that âSπ does succeed in achieving the desired variance

reduction.

6 Conclusions

I have proposed three estimators of regression functions which are weakly separable. Theoretical re-

sults show that the convergence rate of these estimators is comparable to that of the unconstrained

Nadaraya–Watson kernel regression estimator of regression functions with fewer regressors. Simu-

lation results in this paper suggest that in many, but not all, cases accuracy improvements indeed

arise, provided that the separability assumption is correct. The asymptotic distribution of the esti-

mators is normal. Computer simulations indicate that the approximate normality already obtains

in small samples. However, although the bias does not feature in the asymptotic distribution it does

have an effect in samples of moderate size. This problem could potentially be remedied by using a

variant of the estimator which uses local polynomial estimators instead of Nadaraya–Watson ones.

Nevertheless, the method proposed in this paper does reduce the estimator variance as expected.

I show that it is possible to identify and estimate the structural components of the separable

structure individually. Doing so, however, results in a more complicated estimation procedure. I

also show that it could be beneficial to iterate the estimator. Indeed, under strong conditions the

use of generated regressors instead of observed ones is of no asymptotic consequence.

18The theoretical results assume the use of NW type estimators. There is no reason to believe that the results of
this paper could not be obtained for local polynomial estimators, but proofs would be longer.

19



7 References Cited

Ahn, H. (1997), “Semiparametric estimation of a single–index model with nonparametrically

generated regressors,” Econometric Theory 12, 3–31.

Andrews, D.W.K. (1991), “Asymptotic normality of series estimators for nonparametric and

semiparametric regression models,” Econometrica 59, 307–345.

Baumol, W.J., J.C. Panzar and R.D. Willig (1982), “Contestable markets and the theory of

industry structure,” Harcourt Brace Jovanovich (New York).

Bellman, R.E. (1961), “Adaptive control processes,” Princeton University Press.

Blackorby, C., R. Davidson and W. Schworm (1991), “Implicit separability: characterisation and

implications for consumer demands,” Journal of Economic Theory 55, 364–399.

Blundell, R. (1988), “Consumer behaviour: theory and empirical evidence – a survey,” Economic

Journal 98, 16–65.

Blundell, R. and J.–M. Robin (2000), “Latent separability: grouping goods without weak

separability,”, Econometrica 68, 53–84.

Breiman, L. and ,J. H. Friedman(1985). “Estimating Optimal Transformations for Multiple

Regression and Correlation.” Journal of the American Statistical Association, 80, 580–619.

Cannaday, R.E. (1994), “Condominium covenants: cats yes, dogs no,” Journal of Urban

Economics 35, 71–82.

Court, A.T. (1939), “Hedonic price indexes with automotive examples,” in “The dynamics of

automobile demand,” General Motors, New York, 98–119.

Darolles, S, Florens, J.P. and E. Renault (2000), “Nonparametric instrumental regression,”

CREST working paper.

Delgado, M. and J. Mora (1995), “Nonparametric and semiparametric estimation with discrete

regressors,” Econometrica 63, 1477–1482.

Fan, J. and I. Gijbels (1996), “Local polynomial modelling and its applications,” Chapman and

Hall (London).

Fan, Y. and Q. Li (1996), “Consistent model specification tests: omitted variables and

semiparametric functional forms,”, Econometrica 64, 865–890.
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A Proofs

A.1 Some technical lemmas

The following lemma was inspired by theorem 2.1.1 of Prakasa Rao (1983) and uses a method

developed by Parzen (1962).

Lemma 1 For any ω ∈ Wdξ,r,

sup
ξ0∈Rdξ

∣∣∣∣∫ K(t− ξ0)ω(t)dt− ω(ξ0)

∣∣∣∣ = O(hr).

Proof: Use the substitution t← (t− ξ0)/h to establish that∫
K(t− ξ0)ω(t)dt− ω(ξ0) ==

∫
k(t)

(
ω(ξ0 + th)− ω(ξ0)

)
dt.

Let c1, . . . , cdξ be constants in [0, 1] and let tj, ξ0j denote the j–th elements of the t, ξ0–vectors.

Note that by assumption F,
∫
k(t)tsjdt = 0 for s = 1, . . . , r − 1. Then applying the mean value

theorem in each direction in turn and using the Laplace transformation for the remainder term, it

follows that

h−rr!

∫
k(t)

(
ω(ξ0 + th)− ω(ξ0)

)
dt (38)

=

∫
k(t)tr1

∂rω

∂ξr1
(ξ01 + c1t1h, ξ02 + t2h, . . . , ξ0dξ + tdξh)dt

+h−rr!

∫
k(t)

(
ω(ξ01, ξ02 + t2h, . . . , ξ0dξ + tdξh)− ω(ξ0)

)
dt

=

dξ∑
j=1

∫
k(t)trj

∂rω

∂ξrj
(ξ01, . . . , ξ0,j−1, ξ0j + cjtjh, ξ0,j+1 + tj+1h, . . . , ξ0dξ + tdξh)dt. (39)

The RHS in (39) is O(1), uniformly in ξ01 by assumptions D and F. �

Lemma 2 Let {ξi}, ξ1 ∈ Rdξ be some i.i.d. sequence of random vectors with continuous density.

Let ς ∈ Ndξ , and let

K(ς) =
∂|ς|K∏dξ
j=1 ∂ξ

ςj
j

, (40)

with |ς| =
∑dξ

j=1 ςj. If {ωi} is an i.i.d. sequence of random vectors such that for some integer

p∗ > 0 and some C >∞ ∀ξ : E(||ω1||p
∗|ξ1 = ξ) ≤ C, then

E||K(ς)(ξ1)ω1||p
∗

= O(h(1−p∗)dξ−p∗|ς|), (41)

n−1

n∑
i=1

||K(ς)
0 (ξi)ωi||p

∗
= Op(h

(1−p∗)dξ−p∗|ς|). (42)
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Proof: Taking expectations on the left hand side (LHS) in (42) gives (41), whose LHS is bounded

by

CE|K(ς)(ξ1)|p∗ = Ch−p
∗(dξ+|ς|)E|k(ς)(ξ1/h)|.

Since |k(ς)| is itself a continuous, albeit usually not differentiable, function the same substitution

can be applied as in lemma 1 and hence E|k(ς)(ξ1/h)| = O(hdξ). ���

The following is a general lemma concerning V –statistics, which entails a small modification of the

theorem on page 188 of Serfling (1980).19

Lemma 3 Let ζ : R2d → R be a possibly asymmetric V –statistic kernel. If

Eζ12 = 0, E|ζ11| = o(ncn), Eζ2
12 = o(n2c2

n), (43)

then

n−2

n∑
t=1

n∑
i=1

ζit = n−1

n∑
t=1

(Etζit + Etζti) + op(cn) (44)

Moreover, provided that the limit is finite and positive,

c−1
n n−2

n∑
t=1

n∑
i=1

ζit
L→ N

(
0, lim

n→∞
n−1c−2

n E
(
(ζ21 + ζ12)(ζ31 + ζ13)

))
(45)

If in addition to (43), E
(
(ζ21 + ζ12)(ζ31 + ζ13)

)
= o(nc2

n), then

n−2

n∑
t=1

n∑
i=1

ζit = op(cn). (46)

Proof: First (44). Let ζ∗(x, x̃) =
(
ζ(x, x̃) + ζ(x̃, x)

)
/2. Then

n−2

n∑
t=1

n∑
i=1

ζit = n−2

n∑
t=1

n∑
i6=t

ζ∗it + n−2

n∑
i=1

ζ∗ii. (47)

Apply the theorem on page 188 of Serfling (1980) to the first RHS term in (47). The second RHS

term in (47) is also op(cn) because E|ζ11| = o(ncn) by (43). (45) and (46) follow from the fact that

the first RHS term in (44) is an i.i.d. sum. ���

19The result is originally due to Hoeffding (1948).
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A.2 Approximation to V –statistic

When convenient I will use the alternative notation Pnξ = n−1
∑n

i=1 ξ, Pξ = Eξ1. Let

ψ∗n = hr + n−1/2h−d/2 log n, ψnj = hr + n−1/2h−dj/2 log n, j = 1, . . . , D, (48)

such that by assumption G

ψnj = O(ψ∗n), (ψ∗n)2 = o(ψnj), j = 1, . . . , D. (49)

Finally, let ψn = maxj=1,... ,D ψnj = hr + n−1/2h−d∗/2 log n, with d∗ = max(d1, . . . , dD).

Lemma 4 is required to transform χ̂ into form similar to that of γ̂, π̂.

Lemma 4 In this lemma I use the shorthand notation λ̃j0 = λ̃j(x−j, xj0), λ̃j = λ̃j(x−j, xj) and

similar notation applies to other symbols. Let

χ̄j(xj) =

∫ (
ν̂j0 f̂

j − f̂ j0 ν̂j − (aj0 − aj)f̂ j f̂
j
0

)
λjλj0dx

−j + γj(xj), j = 1, . . . , D.

Then sup
xj
|χ̂j(xj)− χ̄j(xj)| = op

(
(ψ∗n)2

)
. (50)

Proof: Horowitz (1999), lemma 1, provides a uniform consistency result for the numerator and

denominator of kernel regression estimators. Here, together with lemma 1, it implies that

supx |f̂(x)− f(x)| = op(ψ
∗
n), supx |ν̂(x)− ν(x)| = op(ψ

∗
n). Hence, recalling that λj = λ̃j/f j,

sup
xj
|χ̂j − χ̄j| = sup

xj

∣∣∣∣∣
∫
ν̂j0 f̂

j − ν̂j f̂ j0
f̂ j f̂ j0

λ̃jλ̃j0dx
−j − χ̄j

∣∣∣∣∣
= sup

xj

∣∣∣∣∣
∫

(ν̂j0 f̂
j − f̂ j0 ν̂j)

(
1 +

f jf j0 − f̂ j f̂
j
0

f̂ j f̂ j0

)
λjλj0dx

−j − χ̄j
∣∣∣∣∣

= sup
xj

∣∣∣∣∣
∫

(ν̂j0 f̂
j − f̂ j0 ν̂j)

(
2f jf j0 − f̂ j f̂

j
0

f jf j0

)
λjλj0dx

−j − χ̄j
∣∣∣∣∣+ op

(
(ψ∗n)2

)
= sup

xj

∣∣∣∣∫ (ν̂j0 f̂ j − f̂ j0 ν̂j + (aj0 − aj)(f jf
j
0 − f̂ j f̂

j
0 )
)
λjλj0dx

−j − χ̄j
∣∣∣∣+ op

(
(ψ∗n)2

)
= op

(
(ψ∗n)2

)
,

where the third equality follows from

1 +
f jf j0 − f̂ j − f̂

j
0

f̂ j f̂ j0
= 1 +

f jf j0 − f̂ j − f̂
j
0

f jf j0
+

(f jf j0 − f̂ j f̂
j
0 )2

f jf j0 f̂
j f̂ j0

,

noting that f j, f j0 are bounded away from zero whenever λj, λj0 > 0 by assumption E. ���
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Let {At}, {Bt} be sequences such that all elements in a sequence either equal 1 a.s. or equal Yt.

For some functions ω, ω∗ : Rd → R, let

ηA;ω(x) = λ(x)ω(x)f(x)E(A1|X1 = x), η̂A;ω(x) = λ(x)ω(x)Pn
(
K(x)A

)
,

αjAB;ωω∗(x
j, x̃j) =

∫
ηA;ω(x)ηjB;ω∗(x

−j, x̃j)dx−j, α̂jAB;ωω∗(x
j, x̃j) =

∫
η̂A;ω(x)η̂jB;ω∗(x

−j, x̃j)dx−j,

β̂jAB;ωω∗(x
j, x̃j) =

∫
η̂A;ω(x)ηjB;ω∗(x

−j, x̃j)dx−j,

b̂jAB;ωω∗(x
j, x̃j) = n−1

n∑
t=1

Kt(x
j)(λj · ωj)(X−jt , xj)ηjB;ω∗(X

−j
t , x̃j)At.

In particular, let ηA(x) = ηA;1(x) and similarly for η̂, α, α̂, β̂, b̂. Thus,

γ̂j(xj) = α̂j1Y (xj, xj0)− α̂jY 1(xj, xj0), γj(xj) = αj1Y (xj, xj0)− αjY 1(xj, xj0),

δ̂j(xj) = α̂j11(xj, xj0), δj(xj) = αj11(xj, xj0),

χ̄j(xj) = α̂j1Y (xj, xj0)− α̂jY 1(xj, xj0) + α̂j11;a1(xj, xj0)− α̂j11;1a(x
j, xj0) + χj(xj).

(51)

I now establish uniform convergence of χ̂j, γ̂j, π̂j to χj, γj, πj. Because of symmetry, lemmas 5 and

6 below equally apply when the arguments (xj and xj0) are swapped.

Lemma 5 For any functions ω, ω∗ for which ωλ, ω∗λ satisfy the conditions imposed on λ in

assumption D and for j = 1, . . . , D,

sup
xj

∣∣∣(α̂jAB;ωω∗(x
j, xj0)− αjAB;ωω∗(x

j, xj0)
)

−
(
b̂jAB;ωω∗(x

j, xj0)− Eb̂jAB;ωω∗(x
j, xj0)

)
−
(
b̂jBA;ω∗ω(xj0, x

j)− Eb̂jBA;ω∗ω(xj0, x
j)
)

−
(
(Eβ̂jAB;ωω∗(x

j, xj0)−αjAB;ωω∗(x
j, xj0)

)
−
(
Eβ̂jBA;ω∗ω(xj0, x

j)−αjBA;ω∗ω(xj0, x
j)
)∣∣∣ = op

(
(ψ∗n)2

)
.

Proof: Assume without loss of generality that ω = ω∗ = 1. I establish that the following sufficient

conditions hold.

sup
xj
|α̂jAB(xj, xj0)− β̂jAB(xj, xj0)− β̂jBA(xj0, x

j) + αjAB(xj, xj0)| = op
(
(ψ∗n)2

)
, (52)

sup
xj

∣∣∣(β̂jAB(xj, xj0)− Eβ̂jAB(xj, xj0)
)
−
(
b̂jAB(xj, xj0)− Eb̂jAB(xj, xj0)

)∣∣∣ = op
(
(ψ∗n)2

)
, (53)

sup
xj

∣∣∣(β̂jAB(xj0, x
j)− Eβ̂jAB(xj0, x

j)
)
−
(
b̂jAB(xj0, x

j)− Eb̂jAB(xj0, x
j)
)∣∣∣ = op

(
(ψ∗n)2

)
, (54)

First (52). The expression in absolute values is∫ (
η̂A(x)− ηA(x)

)(
η̂jB(x−j, xj0)− ηjB(x−j, xj0)

)
dx−j. (55)
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Again using lemma 1 of Horowitz (1999) together with lemma 1 implies that

supx |η̂A(x)− ηA(x)| = op(h
r + n−1/2h−d/2 log n) = op(ψ

∗
n) (and hence the same applies for

η̂B − ηB). Therefore, (55) (and hence (52)) is op
(
(ψ∗n)2

)
. Now (53).

Let ξt(x
j) = AtKt(x

j)

(∫
Kt(x

−j)λj(x−j, xj)ηjB(x−j, xj0)dx−j − λj(X−jt , xj)ηjB(X−jt , xj0)

)
.

Since β̂jAB(xj, xj0) can alternatively be expressed as

Pn
(
AK(xj)

∫
K(x−j)λj(x−j, xj)ηjB(x−j, xj0)dx−j

)
, (53) is (Pn−P)ξ. Since {ξt} is i.i.d., lemma 1 of

Horowitz (1999) implies that (Pn − P)ξ = op(n
−1/2

√
Eξ2

1 log n). But by lemma 1

sup
x̃−j ,xj

∣∣∣∣∫ K(x̃−j − x−j)λj(x−j, xj)ηjB(x−j, xj0)dx−j − λj(x̃−j, xj)ηjB(x̃−j, xj0)

∣∣∣∣ = O(hr),

and because, again by lemma 2, supxj E
(
A1K1(xj)

)2
= O(h−dj), it follows that Eξ2

1 = O(h2r−dj).

So (53) is op(n
−1/2hr−dj/2 log n) = op(ψnj) = op(ψ

∗
n) by (49). Condition (54) follows similarly. ���

Let

γ̂∗j(xj) = β̂j1Y (xj, xj0) + β̂jY 1(xj0, x
j)− β̂jY 1(xj, xj0)− β̂j1Y (xj0, x

j)− γj(xj),
δ̂∗j(xj) = β̂j11(xj, xj0) + β̂j11(xj0, x

j)− δj(xj),
π̂∗j(xj) = πj(xj) +

(
γ̂∗j(xj)− πj(xj)δ̂∗j(xj)

)
/δj(xj),

χ̂∗j(xj) = β̂j1Y (xj, xj0) + β̂jY 1(xj0, x
j)− β̂jY 1(xj, xj0)− β̂j1Y (xj0, x

j) + χj(xj)

+β̂j11;a1(xj, xj0) + β̂j11;1a(x
j
0, x

j)− β̂j11;1a(x
j, xj0)− β̂j11;a1(xj0, x

j),

γ̂•j(xj) = b̂j1Y (xj, xj0) + b̂jY 1(xj0, x
j)− b̂jY 1(xj, xj0)− b̂j1Y (xj0, x

j)− γj(xj),
δ̂•j(xj) = b̂j11(xj, xj0) + b̂j11(xj0, x

j)− δj(xj)
π̂•j(xj) = πj(xj) +

(
γ̂•j(xj)− πj(xj)δ̂•j(xj)

)
/δj(xj),

χ̂•j(xj) = b̂j1Y (xj, xj0) + b̂jY 1(xj0, x
j)− b̂jY 1(xj, xj0)− b̂j1Y (xj0, x

j)

+b̂j11;a1(xj, xj0) + b̂j11;1a(x
j
0, x

j)− b̂j11;1a(x
j, xj0)− b̂j11;a1(xj0, x

j) + χj(xj)

= b̂jY 1(xj0, x
j)− b̂jY 1(xj, xj0) + b̂j11;a1(xj, xj0)− b̂11;a1(xj0, x

j) + χj(xj),

(56)

where the last equality in (56) holds because b̂j11;1a = b̂j1Y .

Now, from lemmas 4 and 5 it follows that for j = 1, . . . , D,

sup
xj

∣∣(γ̂j(xj)− γj(xj))− (γ̂•j(xj)− Eγ̂•j(xj))− (Eγ̂∗j(xj)− γj(xj))∣∣ = op
(
(ψ∗n)2

)
, (57)

sup
xj

∣∣(δ̂j(xj)− δj(xj))− (δ̂•j(xj)− Eδ̂•j(xj))− (Eδ̂∗j(xj)− δj(xj))∣∣ = op
(
(ψ∗n)2

)
, (58)

sup
xj

∣∣(χ̂j(xj)− χj(xj))− (χ̂•j(xj)− Eχ̂•j(xj))− (Eχ̂∗j(xj)− χj(xj))∣∣ = op
(
(ψ∗n)2

)
, (59)

using (51). A similar result for π̂j requires lemma 6 below, and is given in (67).
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Lemma 6 Let ω, ω∗ be as in lemma 5. Then

sup
xj
|α̂jAB;ωω∗(x

j, xj0)− αjAB;ωω∗(x
j, xj0)| = Op(ψnj) (60)

Proof: I again assume that ω = ω∗ = 1 without loss of generality. Lemma 5 and (48) imply that

the following four conditions are sufficient for (60).

sup
xj
|b̂jAB(xj, xj0)− Eb̂jAB(xj, xj0)| = op(ψnj), sup

xj
|b̂jAB(xj0, x

j)− Eb̂jAB(xj0, x
j)| = op(ψnj), (61)

sup
xj
|Eβ̂jAB(xj, xj0)− αjAB(xj, xj0)| = O(hr), sup

xj
|Eβ̂jAB(xj0, x

j)− αjAB(xj0, x
j)| = O(hr). (62)

First (61). I show the first result where the second follows similarly. Note that

b̂jAB(xj, xj0)− Eb̂jAB(xj, xj0) = (Pn − P)ξ with ξt = Kt(x
j)λj(X−jt , xj)ηjB(X−jt , xj0)At. Note that

Eξ2
1 = O(h−dj) by lemma 2 (ς = 0) and again by lemma 1 of Horowitz (1999),

(Pn − P)ξ = op(n
−1/2

√
Eξ2

1 log n) = op(n
−1/2h−dj/2 log n) = op(ψnj). Finally (62). I again only

show the first result. In the proof of lemma 5, we expressed β̂jAB(xj, xj0) as (rearranging terms)∫
λ(x)ηjB(x−j, xj0)Pn

(
AK(x)

)
dx−j, such that

sup
xj
|Eβ̂jAB(xj, xj0)− αjAB(xj, xj0)|

= sup
xj

∣∣∣∣∫ λ(x)ηB(x−j, xj0)
(
E(K1(x)A1)− E(A1|X1 = x)f(x)

)∣∣∣∣
≤ sup

xj

∫ ∣∣λ(x)ηjB(x−j, xj0)
∣∣dx−j sup

x

∣∣E(K1(x)A1

)
− E(A1|X1 = x)f(x)

∣∣ = O(hr)

by lemma 1. ���

Lemmas 4 and 6 have the following consequences (it may help to refer to (51)).

sup
xj
|γ̂j(xj)− γj(xj)| = Op(ψnj), (63)

sup
xj
|δ̂j(xj)− δj(xj)| = Op(ψnj), (64)

sup
xj
|χ̂j(xj)− χj(xj)| = Op(ψnj), (65)

sup
xj∈S̄j

|π̂j(xj)− πj(xj)| = Op(ψnj), (66)

sup
xj∈S̄j

∣∣(π̂j(xj)− πj(xj))− (π̂•j(xj)− Eπ̂•j(xj))− (Eπ̂∗j(xj)− πj(xj))∣∣ = op
(
(ψ∗n)2

)
. (67)

Result (66) may be less obvious than (63)–(65). But since π̂ − π =
(
γ̂ − γ − π(δ̂ − δ)

)
/δ + (π̂ −

π)(δ − δ̂)/δ, (63), (64) and because δj is bounded away from zero on S̄j (66) holds. Finally, (67)

follows similarly from (57) and (58).
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Let Qj = {xj ∈ Sj : γj(xj) = 0} and Q̄j = {xj ∈ S̄j : γj(xj) = 0}. The following lemma

establishes that γj and πj are strictly decreasing in xj1 in a neighborhood of the set Qj.

Lemma 7 For any j = 1, . . . , D,

max
xj∈Q̄j

∂γj

∂xj1
(xj) < 0, max

xj∈Q̄j

∂πj

∂xj1
(xj) < 0.

Proof: Note that max
xj∈Q̄j

∂γj

∂xj1
(xj) = − min

xj∈Q̄j

∫ (
∂aj

∂xj1
· f j · λj

)
(x−j, xj)(f j · λj)(x−j, xj0)dx−j < 0,

because S̄j is assumed compact (which implies that Q̄j is compact also) and a is assumed to be

strictly increasing in xj1. The result for πj follows from the fact that (omitting arguments)

∂πj

∂xj1
=

(
∂γj

∂xj1
− πj ∂δ

j

∂xj1

)
/δj.

But for any xj ∈ Q̄j, πj(xj) = 0 and δj is positive and bounded away from zero on S̄j. ���

Recall that q is one of γ, π, χ. Let q̂, q̂• and any other symbols related to q be the corresponding

symbol in terms of γ, π, χ. The problem with the functions qj is that they can be zero even when

g(xj) 6= g(xj0). I therefore approximate q by a new function q̃.

Let q̃ be a function with the same smoothness properties as q, for which for all j = 1, . . . , D, q̃j

is everywhere monotonically decreasing in xj1 and identical to qj in an open neighborhood N j of

Qj. Such a function q̃ exists by lemma 7.

In lemmas 8–10 I derive a first expansion of âS•(x0)− a(x0).

Lemma 8 For any i.i.d. sequence {ξi} with E|ξ1|1+εξ for some εξ > 0,

n−1

n∑
i=1

K0(X0
i )ξiΛi

(
K0(q̂i)−K0(q̃i)−

D∑
j=1

K0(q̃−ji )K ′0(q̃ji )(q̂
j
i − q

j
i )

)
= op(ρn). (68)

Proof: The following two results are sufficient for (68).

n−1

n∑
i=1

K0(X0
i )ξiΛi

(
K0(q̂i)−K0(qi)−

D∑
j=1

K0(q−ji )K ′0(qji )(q̂
j
i − q

j
i )

)
= op(ρn), (69)

n−1

n∑
i=1

K0(X0
i )ξiΛi

((
K0(qi)−K0(q̃i)

)

+
D∑
j=1

(
K0(q−ji )K ′0(qji )(q̂

j
i − q

j
i )−K0(q̃−ji )K ′0(q̃ji )(q̂

j
i − q

j
i )

))
= op(ρn). (70)
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First (69). Below ς is always a D–vector of nonnegative integers and |ς| denotes its largest

element. Choose some Φ, with 3 < Φ ≤ r + 2. Let ις ∈ RD be such that ιςj = I(ςj = Φ) with I the

indicator function. Further, let exponents in parentheses denote derivative order. Then by the

mean value theorem (order Φ in each direction) the LHS in (69) is

∑
2≤|ς|≤Φ

n−1

n∑
i=1

K0(X0
i )ξiΛi

D∏
j=1

(
(q̂ji − q

j
i )
ςj

ςj!

) D∏
j=1

((
K

(ςj)
0 (qji )

)1−ιςj
(
K

(Φ)
0 (·)

)ιςj), (71)

where (·) denotes some quantity between qji and q̂ji . Now, by (63), (65) and(66),

supxj |q̂j(xj)− qj(xj)| = Op(ψn). Hence

max
i=1,... ,n

∣∣∣∣∣
D∏
j=1

(
(q̂ji − q

j
i )
ςj

ςj!

)∣∣∣∣∣ = Op(ψ
|ς|
n ). (72)

Further, supqj |K
(Φ)
0 (qj)| = O(h−Φ−1) since k(Φ) is assumed bounded. Let k̄ = |k| and let K̄ be

defined accordingly. Thus, for any 2 ≤ |ς| ≤ Φ, the LHS summand in (71) is

Op

(
ψ|ς|n h

−|ις |n−1

n∑
i=1

∣∣∣∣∣K0(X0
i )ξiΛi

D∏
j=1

(
K̄

(ςj)
0 (qji )

)1−ιςj
∣∣∣∣∣
)

= Op(ψ
|ς|
n h
−|ς|−|ις |), (73)

by lemma 2. Convergence is slowest, either when |ς| = 2 or when |ς| = Φ and |ις | = 1, which

results in a convergence rate of ψ2
nh
−2 + ψΦ

nh
−Φ−1. Since ψn = O(ρn log n),

ψ2
nh
−2 + ψΦ

nh
−Φ−1 = O

(
ρn
(
ρnh

−2 log2 n) + ρΦ−1
n h−Φ−1 logΦ n

))
= o(ρn),

since ρnh
−2 log2 n = hr−2 log2 n+ n−1/2h−dm/2−2 log2 n = o(1) and

ρΦ−1
n h−Φ−1 logΦ n = hΦ(r−1)−r−1 logΦ n+

(
n−1/2h−dm/2−1

)Φ−1
h−2 logΦ n = o(1), which follows from

assumption G because r > 2, nhdm+4/ log2 n→∞, and Φ > 3.

Now (70). I will show that for any s > 0, for any integer 0 ≤ t ≤ Φ, and for any j = 1, . . . , D,

sup
xj

∣∣K(t)
(
qj(xj)

)
−K(t)

(
q̃j(xj)

)∣∣Λj(xj) = o(n−s), (74)

i.e. the LHS expression converges at a rate faster than any power of n. Condition (74) implies

(70). First, for xj 6∈ S̄j or xj ∈ N j, the LHS in (74) is zero by the definitions of Λj and q̃j. But

both qj and q̃j are nonzero on S̄j\N j and, since S̄j\N j is compact, they are in fact bounded away

from zero on S̄j\N j. Since k(t) has exponentially declining tails by assumption F and because h

decreases faster than some power of n, for any cq > 0, k(t)(cq/h) decreases exponentially in n. ���
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Lemma 9 For any function ω for which ω2f is boundedly differentiable, if ∆̂•(ω) is as defined in

(27) then

∆̂•(ω)−∆•(ω) = op(1).

Proof: Write

∆̂•(ω)−∆•(ω) = ∆̂• − n−1

n∑
i=1

K0(X0
i )Λiωi

(
K0(q̂i)−K0(q̃i)−

D∑
j=1

K0(q̃−ji )K ′0(q̃ji )(q̂
j
i − q

j
i )

)
(75)

+ n−1

n∑
i=1

K0(X0
i )Λiωi

( D∑
j=1

K0(q̃−ji )K ′0(q̃ji )(q̂
j
i − q

j
i )

)
(76)

+ n−1

n∑
i=1

(
K0(X0

i )ΛiωiK0(q̃i)−∆•
)
. (77)

Lemma 8 establishes that the RHS in (75) is op(ρn) = op(1). By (63), (65) and (66),

q̂ji − q
j
i = op(ψn), uniformly in i, j and by lemma 2, (76) is hence op(ψnh

−1) = op(1).20 Finally, (77)

is the sample mean of a sequence of i.i.d. random variables. I show that the variances of the

elements of the sequence are o(n) and their means are o(1). Let k̄(t) = k2(t)/
∫
k2(t)dt, which is

an even second order kernel. Then the variance of a summand of (77) is bounded by

E
(
K0(X0

1 , q̃1)Λ1ω1

)2
= O(h−d0−D) = O(h−dm) = o(n),

by lemma 2, where the last equality follows from assumption G. For the bias, observe that

E
(
K0(X0

1 , q̃1)Λ1ω1

)
−∆•(ω)

= E
(
K0(X0

1 , q̃1)Λ1ω1|Λ1 > 0
)
p0 − E

(
Λ1ω1|Λ1 > 0, X0

1 = x0
0, q̃1 = 0)f•+(x0

0, 0)p0.

Apply lemma 1. ���

Let Mi = (Yi − a)/∆• and µ•j(xj) = Eq̂•j(xj), µ∗j(xj) = Eq̂∗j(xj), and

Fi = K0(X0
i , q̃i)ΛiMi, F̂i = K0(X0

i , q̂i)ΛiMi, i = 1, . . . , n. (78)

Lemma 10 Let T ji = K0(X0
i , q̃
−j
i )ΛiMiK

′
0(q̃ji ). Then

(
âS•(x0)− a(x0)

)
= n−1

n∑
i=1

Fi +
D∑
j=1

n−1

n∑
i=1

T ji (q̂•ji − µ
•j
i ) +

D∑
j=1

n−1

n∑
i=1

T ji (µ∗ji − q
j
i ) + op(ρn).

(79)

20See the treatment of the higher order terms in lemma 8 for a more elaborate discussion of a similar expression.
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Proof: Let Γ̂ = âS•∆̂•, Γ = a/∆• such that (omitting arguments)

âS• − a =
Γ̂− a∆̂•

∆•
− (âS• − a)

∆̂• −∆•
∆•

. (80)

By lemma 9 (choose ω = 1), the second RHS term in (80) converges faster than does the first.

The first RHS term in (80) is n−1
∑n

i=1 F̂i. Apply lemma 8 with ξi = Mi, to establish that

n−1

n∑
i=1

F̂i = n−1

n∑
i=1

Fi +
D∑
j=1

n−1

n∑
i=1

T ji (q̂ji − q
j
i ) + op(ρn). (81)

The first RHS term in (81) is the first RHS term in (79). I now establish that the second RHS

term in (81) is the same as the sum of the second and third RHS terms in (79) except for an

asymptotically negligble term. By (57), (59), and (67),

max
i=1,... ,n

∣∣(q̂ji − qji )− (q̂•ji − µ
•j
i )− (µ∗ji − q

j
i )
∣∣ = op

(
(ψ∗n)2

)
, j = 1, . . . , D. (82)

So for j = 1, . . . , D,∣∣∣∣∣n−1

n∑
i=1

K0(Xi, q̃
−j
i )K ′0(q̃ji )ΛiMi

(
(q̂ji − q

j
i )− (q̂•ji − Eq̂

•j
i )− (Eq̂∗ji − q

j
i )
)∣∣∣∣∣

≤ max
i=1,... ,n

∣∣(q̂ji − qji )− (q̂•ji − µ
•j
i )− (µ∗ji − q

j
i )
∣∣× n−1

n∑
i=1

∣∣K0(Xi, q̃
−j
i )K ′0(q̃ji )ΛiMi

∣∣
= op

(
(ψ∗n)2h−1

)
= op(ρn),

by (82), lemma 2 and assumption G. ���

In the remainder of the proof of theorem 1, I introduce new symbols q̂•jIi , q̂
•j
IIi, µ

•j
Ii , µ

•j
IIi, µ

•j
δi below,

which allow me to rewrite (79) as
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âS•(x0)− a(x0) = n−1

n∑
i=1

(Fi − EF1) (83)

+
D∑
j=1

n−1

n∑
i=1

T ji Ψj
•i(q̂

•j
Ii − µ

•j
Ii ) (84)

−
D∑
j=1

n−1

n∑
i=1

T ji Ψj
•i(q̂

•j
IIi − µ

•j
IIi) (85)

+
D∑
j=1

n−1

n∑
i=1

(
T ji (µ∗ji − q

j
i )− E

(
T j1 (µ∗j1 − q

j
1)
))

(86)

+ I(q = π)
D∑
j=1

n−1

n∑
i=1

T ji π
j
i (δ̂
•j
i − µ

j
δi) (87)

+ EF1 +
D∑
j=1

E
(
T j1 (µ∗j1 − q

j
1)
)

(88)

+ o(ρn). (89)

I now introduce the new notation, after which I provide a brief outline of the remainder of the

proofs. Let Kj
ts = K(Xj

t −Xj
s ), K

j
t0 = K(Xj

t −K
j
0), but for all symbols not pertaining to kernels,

let λjts = λj(X−jt , Xj
s ), λ

j
t0 = λj(X−jt , xj0) and similarly for other symbols. Let further

Gj
tsi = Kj

tsλ
j
tsλ

j
tif

j
ti, j = 1, . . . , D; i, t, s = 0, . . . , n, (90)

and for i = 1, . . . , n;u = 0, i,

q̂jIiu = n−1

n∑
i=1

Gj
t0i(Yt − a

j
tu), q̂jIIiu = n−1

n∑
i=1

Gj
ti0(Yt − ajtu), (91)

with ajti = aj(X−jt , Xj
i ) and ajt0 = aj(X−jt , xj0).

Then each of the b̂–symbols in (56) can be expanded, e.g.

b̂jY 1(xj0, X
j
i ) = n−1

n∑
t=1

Gj
t0iYt,
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such that

γ̂•ji = n−1

n∑
t=1

Gj
t0i(Yt − a

j
ti)− n−1

n∑
t=1

Gj
ti0(Y j

t − a
j
t0)− γji = q̂jIii − q̂

j
IIi0 − γ

j
i , (92)

δ̂•ji = n−1

n∑
t=1

(Gj
t0i +Gj

ti0)− δji , (93)

χ̂•ji = n−1

n∑
t=1

Gj
t0i(Y

j
t − a

j
t0)− n−1

n∑
t=1

Gj
ti0(Y j

t − a
j
ti) + χji ,= q̂jIi0 − q̂

j
IIii + χji , (94)

π̂•ji = γ̂•ji /δ
j
i − π

j
i (δ̂
•j
i − δ

j
i )/δ

j
i = (q̂jIii − q̂

j
IIi0)/δji − π

j
i − π

j
i (δ̂
•j
i − δ

j
i ) (95)

Set

q̂•jIi =

 q̂jIii, q = γ, π,

q̂jIi0, q = χ.
q̂•jIIi =

 q̂jIIi0, q = γ, π,

q̂jIIii, q = χ.

Then from (92)–(95) it follows that

q̂•ji = Ψj
•i(q̂

•j
Ii − q̂

•j
IIi) + I(q = π)πji δ̂

•j
i .

Now let the symbols µ•jIi , µ
•j
IIi, µ

•j
δi , µ

j
Iii, µ

j
Ii0 be to q̂•jIi , q̂

•j
IIi, δ̂

•j
i , q̂

j
Iii, q̂

j
Ii0, what µ•ji is to q̂•ji .21 Then

µ•ji = Ψj
•i(µ

•j
Ii − µ

•j
IIi) + I(q = π)πjiµ

•j
δi .

The expansion in (83)–(89) then follows from (79).

In appendix A.4 I deal with (88), appendix A.5 covers (83) and (84) and appendix A.6 establishes

that (85)–(87) are asymptotically negligble. First, appendix A.3 provides some useful lemmas on

generated regressors which are used in subsequent proofs.

A.3 Generated Regressors

For j = 1, . . . , D, let τ̃ j be such that τ̃ j
(
q̃j(xj), xj2

)
= xj1 for all xj. By construction q̃j is strictly

monotonic in xj1 and hence τ̃ j is well–defined. Let W∗jr be the class of functions ω : Rdj → R for

which ∂rω/∂ξr1 is continuous, where ξ1 denotes the first argument of ω. The lemmas below deal

with generated regressors and are used in subsequent appendices.

Lemma 11

∂τ̃ j

∂qj
∈ W∗jr , j = 1, . . . , D.

21See lemma 10.
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Proof: Note that

∂τ̃ j

∂q̃j
= 1/

∂q̃j

∂xj1
.

Higher order partial derivatives of τ̃ j with respect to q̃j thus have higher order derivatives of q̃j

with respect to xj1 in the numerator and powers of the first partial in the denominator. The first

partial of q̃j with respect to xj1 is bounded away from zero and the r + 1–st derivative is bounded

by construction. ���

For any function ω : R2d → R, let ∆∗(t)(ω) = ∆∗(t)(ω, x
0
0, 0) with

∆∗(t)(ω, x
0, q) =

∫
ω
(
x0, τ̃ 1(q1, x12), x12, . . . , τ̃D(qD, xD2), xD2, t

)∏D
j=1

∂q̃j

∂xj1

(
τ̃ j(qj, xj2), xj2

) dx12 · · · dxD2, (96)

∆(t)(ω) = ∆•
(
ω(·, t)

)
. (97)

Lemma 12 For any function ω : R2d → R and vectors q, t for which both sides exist,

∆∗(t)(ωΛf) = ∆(t)(ω).

Proof: Let ω∗ = ωΛ and let C(x) be shorthand for
(
x0

0, τ̃
1(0, x12), x12, . . . , τ̃D(0, xD2), xD2

)
. Note

that from (96) and (97)

∆(t)(ω) = E
(
ω(X1, t)Λ1|X0

1 = x0
0, g1 = g(z0),Λ1 > 0

)
f+
• (x0

0, 0)p0

= E
(
ω∗
(
C(X1), t

)
|X0

1 = x0
0, q̃(Z1) = 0,Λ1 > 0

)
f+
• (x0

0, 0)p0

= p0

∫
ω∗
(
C(x), t

)
fX0,X12,... ,XD2,q|Λ>0(x0

0, x
12, . . . , xD2, 0)dx12 · · · dxD2

= p0

∫
ω∗
(
C(x), t

)∏D
j=1

∂q̃j

∂xj1

(
τ̃ j(0, xj2), xj2

)fX|Λ>0

(
C(x)

)
dx12 · · · dxD2

=

∫
ω∗
(
C(x), t

)∏D
j=1

∂q̃j

∂xj1

(
τ̃ j(0, xj2), xj2

)f(C(x)
)
dx12 · · · dxD2 = ∆∗(t)(ω

∗f) = ∆∗(t)(ωΛf), (98)

where the fourth equality follows from substitution of xj1 = τ̃(q1, xj2). ���

Let W̄2d,r be the class of functions ω : R2d → R, i.e. (ω(x, t)), for which the r–th partial derivatives

with respect to any element of the x–vector are continuous in x0, x1, . . . , xD, uniformly in t.

Lemma 13 For any function ω ∈ W̄2d,r,

sup
t

∣∣∣E(K0(X0
1 )K0(q̃1)ω(X1, t)Λ1

)
−∆(t)(ωΛf)

∣∣∣ = O(hr). (99)
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Proof: By substitution of q̃j = q̃j(xj) and lemma 12, the LHS in (99) is

sup
t

∣∣∣∣∫ K0(x0)K0(q̃)∆∗(t)(ωΛf, x0, q̃)dx0dq̃ −∆∗(t)(ωΛf, x0
0, 0)

∣∣∣∣ (100)

Lemma 1 requires ∆∗(t)(ωΛf, ·, ·) ∈ Wd0+D,r for (100) to be O(hr). Let G = {q : ∃z ∈ S̄ : q̃(z) = q},
which is compact since S̄ is compact. Note that ∆∗(t)(ωΛf, x0, q̃) = 0 whenever (x0, q̃) 6∈ Rd0 × G.

But ∆∗(t)(ωΛf, ·, ·) ∈ Wd0+D,r by assumption D and the assumption that ω ∈ W∗2d,r. ���

Lemma 14 For any function ω for which ∂ω/∂xj1 ∈ W̄2d,r,

sup
t

∣∣∣∣∣E(T j1ω(X1, t)
)

+ ∆(t)

(
∂εj

∂xj1
ω

∂q̃j

∂xj1

)∣∣∣∣∣ = O(hr), (101)

where εj(x) = E(M1|X1 = x)Ψj
•(x

j) = Ψj
•(x

j)
(
a(x)− a(x0)

)
/∆•.

Proof: Let

ω̄(x, t) = −
∂ ωεjΛf
∂q̃j/∂xj1

∂xj1
(x, t)/f(x).

Then

E
(
T j1ω(X1, t)

)
= E

(
K0(X0

1 , q̃
−j
1 )K ′0(q̃j1)ω(X1, t)ε

j
1Λ1

)
=

∫
K0

(
x0, q̃−j(z−j)

)
K ′0
(
q̃j(xj)

)
ω(x, t)εj(x)Λ(z)f(x)dx

=

∫
K0

(
x0, q̃(z)

)
ω̄(x, t)f(x)dx = E

(
K0(X0

1 , q̃1)ω̄(X1, t)
)
. (102)

By lemma 13, the RHS in (102) is ∆∗(t)(ω̄f) +O(hr), uniformly in t. Since εj(x) = 0 whenever

x0 = x0
0, q̃ = 0,

∆∗(t)(ω̄f) = ∆∗(t)

(
∂εj

∂xj1
ωΛf

∂q̃j/∂xj1

)
= ∆(t)

(
∂εj

∂xj1
ω

∂q̃j/∂xj1

)
,

where the first equality follows from the fact that εj(x) = 0 whenever x0 = x0
0, q̃(z) = 0 and the

second equality from lemma 12. ���

A.4 Bias

Recall the definition of Fi in (78).
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Lemma 15

EF1 = O(hr), (103)

E
(
T j1 (µ∗j1 − q

j
1)
)

= O(hr), j = 1, . . . , D. (104)

Proof: (103) follows directly from lemma 1, hence I concentrate on (104). Note that from (56) it

follows that µ∗j1 − q
j
1 is a finite sum of terms vj(X1) with

vj(xj) =
(
Eβ̂jAB;ωω∗(x

j, xj0)− αjAB;ωω∗(x
j, xj0)

)
Ψ̄j(xj) or

vj(xj) =
(
Eβ̂jAB;ωω∗(x

j
0, x

j)− αjAB;ωω∗(x
j
0, x

j)
)
Ψ̄j(xj),

with Ψ̄j(xj) one of 1, πj(xj)/δj(xj), 1/δj(xj). Assume without loss of generality (as before) that

ω = ω∗ = 1. I will establish the result for the first choice of vj, where the result for the second

possibility follows similarly. Let A(x) = E(M1|X1 = x)Λ(x). Then it suffices to show that

E
(
K0(X0

1 , q̃
−j
1 )K ′0(q̃j1)A(X1)vj(Xj

1)
)

= O(hr). (105)

The LHS in (105) is by integration by parts22 equal to (omitting arguments)

−
∫
K0

 ∂(Af)
∂xj1

vj +Af ∂vj

∂xj1

∂q̃j

∂xj1

−
Afvj ∂2q̃j

∂(xj1)2(
∂q̃j

∂xj1

)2

 .

It hence suffices to show that

sup
xj∈S̄j

|vj(xj)| = O(hr), sup
xj∈S̄j

∣∣∣∣ ∂vj∂xj1
(xj)

∣∣∣∣ = O(hr),

or alternatively that

sup
xj∈S̄j

|Eβ̂jAB(xj, xj0)− αjAB(xj, xj0)| = O(hr), sup
xj∈S̄j

∣∣∣∣∣E
(
∂β̂jAB
∂xj1

(xj, xj0)− ∂αjAB
∂xj1

(xj, xj0)

)∣∣∣∣∣ = O(hr).

(106)

The first condition in (106) is (62) and is hence satisfied. For the second condition in (106) it is

sufficient to show that

sup
x∈S̄

∣∣∣∣E ∂η̂A
∂xj1

(x)− ∂ηA
∂xj1

(x)

∣∣∣∣ = O(hr).

Let A∗(x) = E(A1|X1 = x)f(x). Then by integration by parts∫
∂K

∂xj1
(x− t)ι∗(t)dt− ∂ι∗

∂xj1
(x) =

∫
K(x− t) ∂ι

∗

∂xj1
(t)dt− ∂ι∗

∂xj1
(x).

Apply lemma 1. ���

22Similar to the first few steps in lemma 14.
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A.5 Asymptotic Normality

I now derive the limiting distribution of ρ−1
n times the sum of (83) and (84). Let for i = 1, . . . , n,

u = 0, i,

U j
t = Kj

t0λ
j
t0∆j

•ft(Yt − a
j
t0), W j

tiu = T ji Ψj
•iG

j
t0i(Yt − a

j
tu), (107)

such that the sum of (83) and (84) is

n−1

n∑
i=1

(
Fi − EF1 +

D∑
j=1

T ji Ψj
•i(q̂

•j
Ii − µ

•j
Ii )

)

= n−1

n∑
t=1

(
Fi − EF1 +

D∑
j=1

(W j
tiu − µ

j
Wiu)

)
, (108)

where µjWiu = Ψj
•iµ

j
Iiu. Since (108) is an i.i.d. sum of random variables, to establish the asymptotic

variance, I look at the variances and covariances of the summands in (108).

Lemma 16

V F1 = κd0+Dh−d0−DV0
• + o(h−d0−D).

Proof: Recall from lemma 15 that EF1 = o(hr). I hence need to show that

EF 2
1 = E

(
K2

0(X0
1 , q̃1)M2

1 Λ2
1

)
= κd0+Dh−d0−DV0

• + o(h−d0−D). (109)

Note that K2 = h−2(d0+D)k2 = h−2(d0+D)κd0+Dk∗ = h−d0−Dκd0+DK∗, with k∗ = k/κd0+D a second

order kernel (i.e. for this kernel r = 2). I then need to show that

E
(
K∗0(X0

1 , q̃1)M2
1 Λ2

1

)
= ∆•(σ

2Λ)/∆2
• + o(1). (110)

The LHS in (110) equals

E
(
K∗0(X0

1 , q̃1)ω(X1)Λ1

)
, (111)

where ω(x) =
(
σ2(x) +

(
a(x)− a(x0)

)2
)

Λ(x)/∆2
•, since M1 =

(
Y1 − a(x0)

)
/∆• by definition. By

lemmas 12 and 13, (111) is

∆•(ω) +O(h2) = ∆•(σ
2Λ)/∆2

• + o(1),

because a(x) = a(x0) whenever x0 = x0
0, g(z) = g(z0). ���
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Let Ei denote expectation treating Xi, Yi as constant.

Lemma 17

E(E1W
j
12u − U

j
1 )2 = O(h2r−dj), j = 1, . . . , D;u = 0, 2

Proof: I show the result for u = 2, which involves one more step than u = 0. Let νjit = ajitf
j
it.

Note that

W j
122 = T j2 Ψj

•2G
j
102(Y1 − aj12) = Kj

10λ
j
10

(
T j2 Ψj

•2λ
j
12f

j
12(Y1 − aj12)

)
= Kj

10λ
j
10

(
(T j2 Ψj

•2λ
j
12f

j
12 −∆j

•f1)Y1 − (T j2 Ψj
•2λ

j
12ν

j
12 −∆j

•ν1)
)

(112)

+Kj
10λ

j
10(∆j

•f1Y1 −∆j
•ν1). (113)

Note first that since a(x) = aj(x−j, xj0) for all x for which gj(xj) = g0(xj0), ∆j
•ν1 = aj10∆j

•f1 and

hence (113) is U j
1 . But since

E
(
T j2 Ψj

•2λ
j(x−j, Xj

2)f j(x−j, Xj
2)−∆j

•f (x
−j)
)

= O(hr),

E
(
T j2 Ψj

•2λ
j(x−j, Xj

2)νj(x−j, Xj
2)−∆j

•ν(x
−j)
)

= O(hr),

uniformly in x−j by lemma 14, the squared expectation of (112) is

E
(
Kj

10λ
j
10E1

(
(T j2 Ψj

•2λ
j
12f

j
12 −∆j

•f1)Y1 − (T j2 Ψj
•2λ

j
12ν

j
12 −∆j

•ν1)
))2

= O(h2r−dj),

by lemma 2. ���

Lemma 18 For any j, j∗ = 1, . . . , D, u, u∗ = 0, 2,

Cov(E1W
j
12u, E1W

j∗

12u∗) =

 O(1), j 6= j∗,

h−djκdjVj• + o(nρ2
n), j = j∗.

(114)

Proof: By lemmas 17 and 1, E(W j
12u) = EU j

1 +O(hr) = O(hr). Therefore,

Cov(E1W
j
12u, E1W

j∗

12u∗) = E(E1W
j
12uE1W

j∗

13u∗) +O(h2r). But∣∣E(E1W
j
12uE1W

j∗

13u∗)− E(U j
1U

j∗

1 )
∣∣

≤
∣∣∣E((E1W

j
12u − U

j
1 )(E1W

j∗

12u∗ − U
j∗

1 )
)∣∣∣+

∣∣∣E(U j
1 (E1W

j∗

12u∗ − U
j∗

1 )
)∣∣∣+

∣∣∣E((E1W
j
12u − U

j
1 )U j∗

1

)∣∣∣
= O(h2r−dj) +O(hr−dj) = O(hr−dj) = o(1),
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by assumption G, which follows from the Schwarz inequality, lemma 17 and the fact that

E(U j
1 )2 = O(h−dj) by lemma 2. Finally, for j∗ 6= j, E(U j

1U
j∗

1 ) = O(1) by lemma 2 and

E(U j
1 )2 = E

(
(Kj

10λ
j
10∆j

•f1)2(Y1 − aj10)2
)

= E
(

(Kj
10λ

j
10∆j

•f1)2
(
σ2

1 + (a1 − aj10)2
))

= h−djκdjVj• +O(h2−dj),

by lemma 1. But h2−dj = o(h−dm) = o(nρ2
n) by assumption G. ���

Lemma 19 For any j = 1, . . . , D, u = 0, 2,

Cov(F1, E1W
j
12u) = o(nρ2

n).

Proof: First, since the means of the quantities whose covariance is taken are O(hr) by lemma 15,

Cov(F1, E1W
j
12u) = E(F1W

j
12u) +O(h2r). (115)

With U j
1 as defined in (107), the first term on the RHS in (115) is

E
(
F1(E1W

j
12u − U

j
1

))
+ E

(
F1U

j
1

)
. (116)

Lemmas 17 and 16 together with the Schwarz inequality imply that the first term in (116) is

O(hr−(d0+D+dj)/2) = o(h−dm) = o(nρ2
n). The absolute value of the second term in (116) is∣∣∣E(K0(X0

1 , q̃1)Λ1M1K
j
10λ

j
10∆j

•f (Y1 − aj10)
)∣∣∣

≤ Ch−1E
∣∣∣K0(X0

1 , q̃
−j
1 , Xj

1)Λ1M1λ
j
10∆j

•f (Y1 − aj10)
∣∣∣ = O(h−1) = o(nρ2

n),

for some C <∞ by lemma 2 since K0(q̃j) is bounded by Ch−1 for some fixed C <∞ by

assumption F. ���

Lemma 20 Let µjIi0, µ
j
Iii be as defined earlier in this appendix. Then, for u = 0, i,

ρ−1
n n−1

n∑
i=1

((
Fi − EF1

)
+

D∑
j=1

T ji Ψj
•i(q̂

j
Iiu − µ

j
Iiu)

)
L→ N(0,V•). (117)

Proof: I show the result for u = i; showing the results for u = 0, i simultaneously only

complicates notation. The LHS in (117) is by (107) equal to

ρ−1
n n−2

n∑
t=1

n∑
i=1

(
(Ft − EF1) +

D∑
j=1

(W j
tii − EiW

j
tii)

)
, (118)

40



which is a V –statistic with asymmetric kernel. In line with lemma 3, denote the expression in large

brackets in (118) by ζit and set cn = ρn. Clearly, Eiζit = 0 a.s. and hence Eζ12 = 0. By lemma 2,

E|F1| = O(1),

E|W j
111| = E|T j1 Ψj

•1K
j
10λ

j
10λ1f1(Y1 − a1)|

≤ C1h
−2E

∣∣K0
10K

j
10(|Y1|+ 1)

∣∣ = O(h−2),

for some C1 > 0 because |K ′| = h−2|k′| and |k′| is bounded. Hence

E|ζ11| = O(h−2) = o(n1/2h−dm) = o(nρn). Further, by (109) and again by lemma 2,

EF 2
1 = O(h−d0−D),

E(W j
122)2 = E

(
T j2 Ψj

•2K
j
10λ

j
10λ

j
12(f j12Y1 − νj12)

)2

≤ C2E(T j2 )2E
(
Kj

10λ
j
10(|Y1|+ 1)

)2
= O(h−d0−D−3)O(h−dj) = O(h−d0−D−3−dj),

for some C2 <∞. Hence Eζ2
12 = O(h−d0−D−3−dj) = O(h−2dm−3) = o(nh−dm) = o(n2ρ2

n) by

assumption G. Hence lemma 3 implies that

ρ−1
n n−2

n∑
t=1

n∑
i=1

ζit = ρ−1
n n−1

n∑
t=1

Etζit + o(1).

All that remains to be done is to establish the limiting variance. Now, E
(
E1(ζ21)

)2
is

E(ζ21ζ31) = V F1 (119)

+
D∑
j=1

Cov(F1, E1W
j
122) (120)

+
D∑
j=1

V E1W
j
122 (121)

+
D∑
j=1

D∑
j∗ 6=j

Cov(E1W
j
122, E1W

j∗

122). (122)

By lemma 16, (119) is h−d0−Dκd0+DV0
• + o(nρ2

n). Lemma 19 implies that (120) is o(nρ2
n). Finally,

lemma 18 establishes that (122) is o(nρ2
n) and that (121) is

∑D
j=1 h

−djκdjVj• + o(nρ2
n). ���

A.6 Negligble Terms

Lemma 21 establishes that (85) is asymptotically negligble, lemma 22 does so for (86) and lemma

23 for (87).
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Lemma 21 Let µjIIi0 = Eiq̂
j
IIi0, µjIIii = Eiq̂

j
IIii. Then for u = 0, i,

n−1

n∑
i=1

T ji Ψj
•i(q̂

j
IIiu − µ

j
IIiu) = op(ρn). (123)

Proof: I show the result for u = 0 where the result for u = i follows similarly. Let

Υt = λjt0(f jt0Yt − ν
j
t0) and choose ζit = T ji Ψj

•i
(
Kj
tiλ

j
tiΥt − Ei(Kj

tiλ
j
tiΥt)

)
in lemma 3, such that the

LHS in (123) is n−2
∑n

i=1

∑n
t=1 ζit. Clearly, Eζ12 = 0. The procedure to establish that

E|ζ11| = o(nρn) and Eζ2
12 = o(n2ρ2

n) is essentially the same as in lemma 20 and is not repeated

here. I now show that E(ζ21ζ31) = o(nρ2
n), which is sufficient for (123). Note that

E(ζ21ζ31) = E(E1ζ21)2 ≤ E
(
Υ1E1(T j2 Ψj

•2K
j
12λ

j
12)
)2

= E
(
T j2T

j
3Q(Xj

2 , X
j
3)
)
, (124)

with (setting Υ∗(x) = E(Υ1|X1 = x)),

Q(xj, x̃j) = E
(
K1(xj)K1(x̃j)Υ2

1λ
j(X−j1 , xj)λj(X−j1 , x̃j)

)
=

∫
K(x̄j − xj)K(x̄j − x̃j)Υ∗(x̄)λj(x̄−j, xj)λj(x̄−j, x̃j)dx̄

= h−dj
∫
k(u)k

(
x̃j − xj

h
+ u

)
Υ∗j(x̄−j, x̃j + hu)λj(x̄−j, xj)λj(x̄−j, x̃j)dx̄−jdu,

where the last equality follows with the substitution of u = (x̄j − x̃j)/h. Let

Q̄(x) = E(Λ1M1|X1 = x)f(x). Since λ is bounded and supxj
∫

Υ∗j(x−j, xj)dx−j <∞ by

assumption D, the RHS in (124) is bounded by some constant times

h−dj sup
u

∣∣∣∣∣E
(
T j2T

j
3k

(
Xj

2 −X
j
3

h
+ u

))∣∣∣∣∣
= h−dj sup

u

∣∣∣∣∣E
(
K0(X0

2 , q̃
−j
2 )K0(X0

3 , q̃
−j
3 )K ′0(q̃j2)K ′0(q̃j3)Λ2Λ3M2M3k

(
Xj

2 −X
j
3

h
+ u

))∣∣∣∣∣
= h−dj sup

u

∣∣∣∣∣
∫
K0

(
x0, q̃−j(z−j)

)
K0

(
x̃0, q̃−j(z̃−j)

)
K ′0
(
q̃j(xj)

)
K ′0
(
q̃j(x̃j)

)
× k

(
xj − x̃j

h
+ u

)
Q̄(x)Q̄(x̃)dxdx̃

∣∣∣∣∣
= sup

u

∣∣∣∫ K0

(
x0, q̃−j(z−j)

)
K0

(
x̃0, q̃−j(z̃−j)

)
K ′0
(
q̃j(xj)

)
K ′0

(
q̃j
(
x̃j + h(u+ v)

))
× k(v)Q̄(x)Q̄j

(
x̃−j, xj + h(u+ v)

)
dxdx̃−jdv

∣∣∣,
≤ sup

u

∫ ∣∣∣∣K0

(
x̃0, q̃j(xj)

)
K ′0

(
q̃j
(
x̃j + h(u+ v)

))
k(v)

× sup
u,v

∣∣∣∣∫ K0

(
x0, q̃−j(z−j)

)
K ′0
(
q̃j(xj)

)
Q̄(x)Q̄j

(
x̃−j, xj + h(u+ v)

)
dx

∣∣∣∣ ∣∣∣∣dx̃−jdv (125)
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by substitution of v = (xj − x̃j)/h+ u. The inner supremand is O(1), uniformly in u, v. Thus,

(125) is

O(1) sup
u

∫ ∣∣∣K0

(
x̃0, q̃j(xj)

)
K ′0

(
q̃j
(
x̃j + h(u+ v)

))
k(v)

∣∣∣ dx̃−jdv = O(h−1) = o(h−dm) = o(nρ2
n),

by lemma 2. ���

Lemma 22

n−1

n∑
i=1

T ji (µ∗ji − q
j
i )− E

(
T j1 (µ∗j1 − q

j
1)
)

= op(ρn), j = 1, . . . , D.

Proof: In the proof of lemma 15, I showed that supxj∈S̄j |µ∗j(xj)− qj(xj)| = O(hr). By the

Schwarz inequality and lemma 2,

E
(
T j1 (µ∗j1 − q

j
1)
)2 ≤ E

(
K0(X0

1 , q̃
−j
1 )K ′0(q̃j1)M1

)2
sup
x

(
Λ(x)

(
µ∗j(xj)− qj(xj)

))2

= O(h−d0−D−3)O(h2r) = O(h2r−dm−3) = o(ρn). ���

Lemma 23

n−1

n∑
i=1

T ji Ψj
•iπ

j
i (δ̂
•j
i − µ

•j
δi ) = op(ρn), j = 1, . . . , D. (126)

Proof: Choose ζit = T ji Ψj
•iπ

j
i (G

j
t0i − EiG

j
t0i +Gj

ti0 − EiG
j
ti0) in lemma 3, such that the LHS in

(126) is n−2
∑n

t=1

∑n
i=1 ζit. Using the same steps as in the proof of lemma 20, it can be shown that

E|ζ11| = op(nρn) and Eζ2
12 = op(n

2ρ2
n). Here I show that E(ζ21ζ31) = o(ρn), which is sufficient

since E1ζ12 = 0 a.s.. Note that

E(ζ21ζ31) ≤ 2E
(
E1

(
T j2π

j
2(Gj

102 − E2G
j
102)
)
/δj2

)2

+ 2E
(
E1

(
T j2π

j
2(Gj

120 − E2G
j
120)/δj2

))2

. (127)

I show that the first RHS term in (127) is o(nρ2
n), where the second term follows similarly. Thus,

E
(
E1

(
T j2π

j
2Ψj
•2(Gj

102 − E2G
j
102)
))2

= V E1(T j2 Ψj
•2π

j
2G

j
102) ≤ E

(
E1(T j2 Ψj

•2π
j
2G

j
102)
)2

= E
(
Kj

10λ
j
10E1(T j2 Ψj

•2π
j
2λ

j
12f

j
12)
)2

= o(h2r−dj),

since the inner expectation is o(hr) a.s. by lemma 14. ���
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A.7 Proof of Theorem 1

Consider the expansion of âS•(x0)− a(x0) in (83)–(88). Lemmas 21–23 establish that (85)–(87) are

op(ρn). In lemma 15 I showed that the asymptotic bias is O(hr), which is o(ρn) if ` = 0 and O(ρn),

otherwise by the definition of `. By lemma 20, ρ−1
n times the sum of (83) and (84) has a limiting

N(0,V•)–distribution. ���

A.8 Lemmas for Theorem 2

Lemma 24 is an auxiliary result, which is used in the remaining lemmas.

Lemma 24 For any sequence of functions {ξi} for which supx |ξi(x)| has moments greater than

one and for any j = 1, . . . , D,

sup
x
n−1

n∑
i=1

∣∣∣K0(X0
i )
(
K0(q̂−ji )K ′0(q̂ji )−K0(q̃−ji )K ′0(q̃ji )

)
ξi(x)Λi

∣∣∣ = Op(ρnh
−2 log n) = op(1).

Proof: The proof is close to that of lemma 8 and the steps below are essentially a shorter

repetition of lemma 8. To understand the steps below it is helpful to read lemma 8 first. I will

show that

sup
x
n−1

n∑
i=1

∣∣∣K0(X0
i )
(
K0(q̂−ji )K ′0(q̂ji )−K0(q−ji )K ′0(qji )

)
ξi(x)Λi

∣∣∣ = Op(ρnh
−2 log n), (128)

sup
x
n−1

n∑
i=1

∣∣∣K0(X0
i )
(
K0(q−ji )K ′0(qji )−K0(q̃−ji )K ′0(q̃ji )

)
ξi(x)Λi

∣∣∣ = Op(ρnh
−2 log n), (129)

First, (129) follows from (74). Now (128). Let ς, ις be defined as in lemma 8 and let ς∗ be ς except

that ς∗j = ςj − 1. Applying the mean value theorem, like in (71), the LHS in (128) is

sup
x

∑
2≤|ς|≤Φ

n∑
i=1

∣∣∣∣∣K0(X0
i )ξ(x)Λi

D∏
j∗=1

(
(q̂j
∗

i − q
j∗

i )ς
∗
j∗

ς∗j∗ !

)
D∏

j∗=1

((
K

(ςj∗ )

0 (qj
∗

i )
)1−ιςj∗(K(Φ)

0 (·)
)ιςj∗)∣∣∣∣∣ , (130)

where (·) denotes some quantity between qji and q̂ji . Following the same steps as in lemma 8 after

(71) and using the same notation, the LHS in (130) is

Op

(
ψ|ς|−1
n h−|ς|−|ις | sup

x
n−1

n∑
i=1

∣∣∣∣∣K0(X0
i )ξi(x)Λi

D∏
j∗=1

(
K̄(ςj∗ )0(qj

∗

i )
)1−ιςj∗

∣∣∣∣∣
)

= Op(ψ
|ς|−1
n h−|ς|−|ις |). (131)

Note that since Φ > 3 and |ις | = 1 only if |ς| = Φ,

ψ|ς|−1
n h−|ς|−|ις | = O

(
ψnh

−2 + (ψnh
−2)Φ−1hΦ−3

)
.

But ψnh
−2 = ρnh

−2 log n = O(n−1/2hdm/2−2 log n) = o(1) by assumption G. ���
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Let P j
t (x) = K0(X0

t , q̃
−j
t )K ′0(q̃jt )Λtλ

j(x−j, Xj
t ). Then lemma 24 implies that

sup
x
|P̂ j
t (x)− P j

t (x)| = op(1), j = 1, . . . , D. (132)

Let for ω = f, ν,

Rj
ω(x) = E

(
T j1 Ψj

•1(λj · ωj)(x−j, Xj
1)
)
. (133)

with P̂ j as defined in (28).

Lemma 25 Let ω be one of f, ν. Then

sup
x

∣∣∣∣∣n−1

n∑
t=1

R̂j
ωt(x)−Rj

ω(x)

∣∣∣∣∣ = op(1). (134)

Proof: Recall that Mt = (Yt − a0)/∆•. I establish (134) in two steps:

sup
x

∣∣∣∣∣n−1

n∑
t=1

(
P̂ j
t (x)Ψ̂j

•t
Yt − â(x0)

∆̂•
ω̂j(x−j, Xj

t )− P
j
t (x)Ψj

•tMtω
j(x−j, Xj

t )
)∣∣∣∣∣ = op(1), (135)

sup
x

∣∣∣∣∣n−1

n∑
t=1

P j
t (x)Ψj

•tMtω
j(x−j, Xj

t )− E
(
T j1 Ψj

•1(λj · ωj)(x−j, Xj
1)
)∣∣∣∣∣ = op(1). (136)

First (135). Since

1

∆̂•
− 1

∆•
=

∆• − ∆̂•
∆•

1

∆̂•
,

Yt − âS•(x0)

∆•
−Mt =

a(x0)− âS•(x0)

∆•
,

the LHS in (135) is

sup
x

∣∣∣∣∣n−1

n∑
t=1

(
P̂ j
t (x)Ψ̂j

•t
Yt − â(x0)

∆̂•
ω̂j(x−j, Xj

t )− P
j
t (x)Ψj

•tMtω
j(x−j, Xj

t )
)∣∣∣∣∣ (137)

≤

∣∣∣∣∣∆• − ∆̂•
∆•

∣∣∣∣∣ sup
x

∣∣∣∣∣n−1

n∑
t=1

(
P̂ j
t (x)Ψ̂j

•t
Yt − â(x0)

∆̂•
ω̂j(x−j, Xj

t )− P
j
t (x)Ψj

•tMtω
j(x−j, Xj

t )
)∣∣∣∣∣

(138)

+ sup
x

∣∣∣∣∣n−1

n∑
t=1

Mt

(
P̂ j
t (x)Ψ̂j

•tω̂
j(x−j, Xj

t )− P
j
t (x)Ψj

•tω
j(x−j, Xj

t )
)∣∣∣∣∣ (139)

+

∣∣∣∣a(x0)− â(x0)

∆•

∣∣∣∣ sup
x

∣∣∣∣∣n−1

n∑
t=1

(
P̂ j
t (x)Ψ̂j

•tω̂
j(x−j, Xj

t )− P
j
t (x)Ψj

•tω
j(x−j, Xj

t )
)∣∣∣∣∣ (140)
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By lemma 9, (138) is of lesser order than (137). Expressions (139) and (140) are also op(1), which

I now show. Let M∗
t be one of Mt, 1, Then

sup
x

∣∣∣n−1

n∑
t=1

M∗
t

(
P̂ j
t (x)Ψ̂j

•tω̂
j(x−j, Xj

t )− P
j
t (x)Ψj

•tω
j(x−j, Xj

t )
)∣∣∣ (141)

≤ sup
x

∣∣∣n−1

n∑
t=1

M∗
t

(
P̂ j
t (x)− P j

t (x)
)(
ω̂j(x−j, Xj

t )Ψ̂
j
•t − ωj(x−j, X

j
t )Ψ

j
•t
)∣∣∣ (142)

+ sup
x
n−1

n∑
t=1

∣∣∣M∗
t

(
P̂ j
t (x)− P j

t (x)
)
Ψj
•tω

j(x−j, Xj
t )
∣∣∣ (143)

+ sup
x

∣∣∣n−1

n∑
t=1

M∗
t P

j
t (x)

(
ω̂j(x−j, Xj

t )Ψ̂
j
•t − ωj(x−j, X

j
t )Ψ

j
•t
)∣∣∣. (144)

(142) is bounded by

sup
x
n−1

n∑
t=1

∣∣∣M∗
t

(
P̂ j
t (x)− P j

t (x)
)∣∣∣ sup

x
max
t=1,... ,n

∣∣ω̂j(x−j, Xj
t )− ωj(x−j, X

j
t )
∣∣, (145)

which is op(n
−1/2h−d/2 log n), because the first factor in (145) is op(1) by (132) and because the

second factor is op(n
−1/2h−d/2 log n) since

supx
(
|f̂(x)− f(x)|+ |ν̂(x)− ν(x)|

)
= op(n

−1/2h−d/2 log n) by lemma 1 of Horowitz (1999).

Similarly, (143) is op(1), again by (132). Further, (144) is bounded by

sup
x
n−1

n∑
t=1

|M∗
t P

j
t | sup

x
max
t=1,... ,n

∣∣ω̂j(x−j, Xj
t )Ψ̂

j
•t − ωj(x−j, X

j
t )Ψ

j
•t
∣∣

= Op(h
−1)op(n

−1/2h−d/2 log n) = op(n
−1/2h−d/2−1 log n) = op(1),

by assumption G. Hence (147) is op(1), and therefore so is (141). So (135) holds.

Now (136). By lemma 1 of Horowitz (1999), (136) is

Op

(
sup
x
n−1/2

√
E
(
P j

1 (x)Ψj
•1M1ωj(x−j, X

j
1)
)2

log n
)
.

But

sup
x
E
(
P j

1 (x)Ψj
•1M1ω

j(x−j, Xj
1)
)2

= sup
x
E
(
T j1 (x)Ψj

•1(λj · ωj)(x−j, Xj
1)
)2

= O(h−d0−D−2) = O(h−dm−2),

by lemma 2. Finally, n−1h−dm−2 log2 n = o(1) by assumption G. ���
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A.9 Proof of Theorem 2

I first show that V̂0
• = V0

• + op(1) and further down that V̂j• = Vj• + op(h
dj−dm), j = 1, . . . , D.

Consider (31). Let ϑ(x) = E(Y 2
1 |X1 = x). By lemma 9,

n−1

n∑
i=1

K0(X0
i , q̂i)Λ

2
i = ∆•(Λ) + op(1),

n−1

n∑
i=1

K0(X0
i , q̂i)Λ

2
iYi = ∆•(Λa) + op(1),

n−1

n∑
i=1

K0(X0
i , q̂i)Λ

2
iY

2
i = ∆•(Λϑ) + op(1),

∆̂•(1) = ∆•(1) + op(1).

Further, by theorem 1, â(x0)− a(x0) = op(1). Therefore, by Slutsky,

V̂0
• =

n−1
∑n

i=1 K0(X0
i , q̂i)Λ

2
i

(
Yi − â(x0)

)2

∆̂2
•(1)

=
∆•(Λ

2ϑ)− 2∆•(Λa)a(x0) + ∆•(Λ)a2(x0)

∆2
•(1)

+ op(1) =
∆•(Λ

2σ2)

∆2
•(1)

+ op(1) = V0
• + op(1),

because ∆•(ωa) = a(x0)∆•(ω) for any function ω since a(x) = a(x0) for any x for which g(x) =

g(x0).

I now show that V̂j• = Vj• + op(h
dj−dm). Let ζjti = K0(Xi)λ

j(X−ji , xj0)Rf (X
j
i )
(
Yi − aj(X−ji , Xj

t )
)
.

From (133) it then follows that

K0(Xi)λ
j(X−ji , xj0)

(
YiR

j
f (Xi)−Rj

ν(Xi)
)

= Eiζ
j
1i.
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Therefore, by (32),

hdm−dj
∣∣V̂j• − Vj•∣∣
≤ κ−djhdmn−1

n∑
i=1

K2
0(Xj

i )
(
λj(X−ji , xj0)

)2

×

(
n−1

n∑
t=1

((
R̂j
ft(Xi)−Rj

f (Xi)
)
Yi −

(
R̂j
νt(Xi)−Rj

ν(Xi)
)))2

(146)

+ κ−djhdmn−1

n∑
i=1

K2
0(Xj

i )
(
λj(X−ji , xj0)

)2

×

∣∣∣∣∣n−1

n∑
t=1

((
R̂j
ft(Xi)−Rj

f (Xi)
)
Yi −

(
R̂j
νt(Xi)−Rj

ν(Xi)
))∣∣∣∣∣

×

∣∣∣∣∣n−1

n∑
t=1

(
Rj
f (Xi)Yi −Rj

ν(Xi)
)∣∣∣∣∣ (147)

+ κ−djhdm
(
n−1

n∑
i=1

(Eiζ
j
1i)

2 − E(E2ζ
j
12)2
)

(148)

+ hdmκ−dj
(
E(E2ζ

j
12)2 − h−djκdjVj•

)
(149)

By lemmas 25 and 2, (146) and (147) are both op(1). Squaring (148) and taking expectations

implies that the following is a sufficient condition for (148) to be op(1).

h2dmE(E2ζ
j
12)4 = o(n). (150)

But by lemma 2, the LHS in (150) is O(h2dm−3(d0+D)−4) = O(h−dm−4) = o(n) by assumption G.

Finally, (149) is o(1) by lemma 18.

The result for when λ is replaced with λ̃/f̂ follows similarly. ���

A.10 Identification

Lemma 26

ĝ1(x1)− g1(x1) = Op

(
n−1/2h−d1

)
. (151)

Proof: To simplify notation, let ω̂ = ĝ
(1)
, ω = g

(1)
, and let ξ̂ = ĝ1(x1), ξ = g1(x1). Then (151) is

equivalent to ω̂−(ξ̂)− ω−1(ξ) = Op

(
n−1/2h−d1

)
. Note that

ξ̂ − ξ = ĝ1(x1)− g1(x1) = Op

(
n−1/2h−d1

)
, which follows, with minor adjustments for the fact that
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no uniform convergence is required here, from lemma 6. Then by the continuous differentiability of

ω and by the assumption that ω′ is bounded away from zero, the mean value theorem implies that

|ω−1(ξ̂)− ω−1(ξ)| =

∣∣∣∣∣ ξ̂ − ξω′(·)

∣∣∣∣∣ = Op

(
n−1/2h−d1

)
. (152)

It now remains to be shown that ω̂−(ξ̂)− ω−1(ξ̂) converges at the same rate. Let

ℵ0 = max
(
ω(0), ω̂(0)

)
and ℵ1 = min

(
ω(1), ω̂(1)

)
. Then

|ω̂−(ξ̂)− ω−1(ξ̂)| = |ω̂−(ξ̂)− ω−1(ξ̂)|I
(
ξ̂ ∈ [ℵ0,ℵ1]

)
(153)

+ |ω̂−(ξ̂)− ω−1(ξ̂)|I
(
ξ̂ ∈ [ω(0),ℵ0)

)
(154)

+ |ω̂−(ξ̂)− ω−1(ξ̂)|I
(
ξ̂ ∈ (ℵ1, ω(1)]

)
. (155)

First (153). By construction of ω̂−, some s∗ exists for which ω̂(s∗) = ξ and such that

ω̂−
(
ω̂(s∗)

)
= s∗. But then

ω̂−(ξ̂)− ω−1(ξ̂) = s∗ − ω−1
(
ω̂(s∗)

)
= ω−

(
ω(s∗)

)
− ω−1

(
ω̂(s∗)

)
.

Proceed as in (152). Since (154) and (155) are very similar, I only deal with (154). So

ω(0) ≤ ξ̂ < ω̂(0). Then

|ω̂−(ξ̂)− ω−1(ξ̂)| = |ω−1(ξ̂)| ≤ ω−1
(
ω̂(0)

)
= ω−1

(
ω̂(0)

)
− ω−1

(
ω(0)

)
.

Proceed again as in (152). ���

A.11 Iteration

Since there are only two groups, 0 and 1, in the derivation below, the superscript 2 will mean ‘square’.

The derivation uses many shortcuts, which are always repetitions of similar results derived in detail

in the proof of theorem 1.

Let ĝ(x1) =
∫
â(x)λ̃2(x0)dx0 such that χ̂1(x1) = ĝ(x1

0) − ĝ(x1). Let moreover ĝ0 = ĝ(x1
0) and

ĝi = ĝ(X1
i ) and similarly for ˆ̂g, g. It then follows from appendix A.7 that

âSχ(x0)− a(x0) ≈ âI(x0)− a(x0) + n−1

n∑
i=1

K ′(g0 − gi)
Yi − a0

fX0g(x
0
0, g0)

(ĝ0 − g0), (156)

where âI is again the Nadaraya–Watson estimator with regressors X0
i , gi and ≈ means that the

remaining terms are irrelevant. The fX0g–component in the denominator in (156) is the joint

49



density of X0
i , gi and replaces ∆ since Λ = 1 everywhere. Similarly,

ˆ̂aSχ(x0)− a(x0) ≈ âI(x0)− a(x0) + n−1

n∑
i=1

K ′(g0 − gi)
Yi − a0

fX0g(x
0
0, g0)

(ˆ̂g0 − g0).

âSχ and ˆ̂aSχ are hence asymptotically equally efficient if ˆ̂g0 − g0 ≈ ±(ĝ0 − g0). When ˆ̂g0 − g0 ≈
−(ĝ0 − g0), the result of section 4.2 applies.

Now, following steps similar to those in the proof of theorem 1,

ˆ̂g0 − g0 =

∫
âS(x0, x1

0)λ̃2(x0)dx0 − g0

≈ n−1

n∑
i=1

∫
K(x0 −X0

i , ĝ0 − ĝi)
Yi − a(x0, x1

0)

fX0g(x0, g0)
λ̃2(x0)dx0

≈ n−1

n∑
i=1

K(ĝ0 − ĝi)
Yi − a(X0

i , x
1
0)

fX0g(X
0
i , g0)

λ̃2
i

≈ n−1

n∑
i=1

K ′(g0 − gi)
Yi − a(X0

i , x
1
0)

fX0g(X
0
i , g0)

λ̃2
i (ĝ0 − g0), (157)

where the last step involves the mean value theorem. The zero–order term is omitted because it

is asymptotically negligble, and the ĝi − gi bit in the first order term disappears because it is of a

smaller order of magnitude when averaged across i.

By the weak law of large numbers (157) is

≈ E

(
K ′(g0 − g1)

Y1 −m(X0
1 , g0)

fX0g(X
0
1 , g0)

λ̃2
1

)
(ĝ0 − g0).

But by standard kernel derivative estimation procedures,

E

(
K ′(g0 − g1)

Y1 −m(X0
1 , g0)

fX0g(X
0
1 , g0)

λ̃2
1

)
≈
∫
K ′(g0 − g)

(
m(x0, g)−m(x0, g0)

) f(x0, g)

f(x0, g0)
λ̃2(x0)dx0dg

≈ −
∫
∂m

∂g
(x0, g0)λ̃2(x0)dx0

= −
∫

∂a
∂x11 (x0, x1

0)λ̃2(x0)dx0

∂g
∂x11 (x1

0)
= −1.
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Linear, σ = 1 Probit–Like, σ = 1 Product of Logs, σ = 1
MSE MSE99 MDAE MSE MSE99 MDAE MSE MSE99 MDAE

d n âSπ â âSπ â âSπ â âSπ â âSπ â âSπ â âSπ â âSπ â âSπ â
3 100 297 339 214 290 282 323 � 303 098 257 224 394 2064 313 255 266 234 298

200 201 256 141 212 221 264 6909 227 078 185 210 238 � 239 260 196 217 242
4 100 6648 547 304 489 350 450 � 513 110 456 290 424 658 511 013 454 078 421

200 430 449 202 395 271 385 9901 417 101 364 293 358 397 415 006 362 052 356
9 100 717 987 654 914 553 668 � 986 145 913 324 667 6370 986 022 913 090 666

200 581 984 518 910 480 668 � 983 134 909 333 667 � 983 010 909 061 667

Linear, σ = 2 Probit–Like, σ = 2 Product of Logs, σ = 2
MSE MSE99 MDAE MSE MSE99 MDAE MSE MSE99 MDAE

d n âSπ â âSπ â âSπ â âSπ â âSπ â âSπ â âSπ â âSπ â âSπ â
3 100 1219 1242 622 1052 460 598 � 1205 281 1019 314 583 � 1216 424 1029 336 586

200 678 931 415 761 363 484 � 902 177 734 260 470 � 915 349 745 286 473
4 100 � 2079 789 1851 533 857 � 2045 272 1818 303 843 � 2043 160 1816 196 842

200 1773 1693 545 1481 422 727 � 1661 175 1450 272 713 � 1659 058 1448 128 712
9 100 2075 3946 1852 3653 896 1335 � 3945 644 3652 416 1336 � 3945 552 3652 325 1333

200 1688 3932 1478 3638 769 1335 � 3931 459 3637 346 1335 � 3931 336 3637 216 1335

Probit, σ = 1 Flat, σ = 1 Arctan–Power, σ = 1
MSE MSE99 MDAE MSE MSE99 MDAE MSE MSE99 MDAE

d n âSπ â âSπ â âSπ â âSπ â âSπ â âSπ â âSπ â âSπ â âSπ â
3 100 570 029 064 023 204 071 7220 301 037 254 117 291 2056 348 244 295 205 318

200 563 020 058 002 195 006 775 225 020 183 085 234 � 273 254 222 185 260
4 100 1060 047 024 040 100 071 658 511 013 454 078 421 3472 512 066 455 163 422

200 2457 037 016 030 080 064 397 415 006 362 052 356 2086 416 060 363 153 357
9 100 1549 071 038 063 114 022 6370 986 022 913 090 667 7966 986 092 913 154 667

200 094 071 031 062 105 022 � 983 010 909 061 667 � 983 082 909 136 667

Probit, σ = 2 Flat, σ = 2 Arctan–Power, σ = 2
MSE MSE99 MDAE MSE MSE99 MDAE MSE MSE99 MDAE

d n âSπ â âSπ â âSπ â âSπ â âSπ â âSπ â âSπ â âSπ â âSπ â
3 100 040 047 035 041 119 120 � 1202 212 1017 254 583 � 1249 436 1058 307 597

200 028 034 023 028 097 097 � 900 109 732 182 468 � 948 367 772 245 483
4 100 � 078 027 070 112 158 � 2043 160 1816 196 842 � 2044 215 1817 242 843

200 � 061 020 054 096 132 � 1659 058 1448 128 712 � 1660 118 1449 187 713
9 100 � 127 039 119 126 172 � 3945 552 3652 325 1333 � 3945 604 3652 364 1334

200 277 126 032 118 118 173 � 3931 336 3637 216 1335 � 3931 404 3637 262 1334

Table 1: Simulation results. Entries were multiplied by 1,000. Models as described in the text. �=entry at least 10,000. MSE=mean
square error, MSE99=mean square error of 99% of replications, MDAE=median absolute error. Please refer to text for a precise
description.
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Figure 1a: Estimator distribution at (0,0,0), linear model
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Figure 1b: Estimator distribution at (0,1,0), linear model
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Figure 1c: Estimator distribution at (-1,1,-1), linear model
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Figure 1d: Estimator distribution at (1,1,1), linear model
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