Nonparametric Regression Estimation
using Weak Separability

Joris Pinksel

This version: November 2001

In this paper I propose three new estimators of nonparametric regres-
sion functions subject to weak separability (WS). The use of WS re-
duces the curse of dimensionality. WS nests other separability con-
cepts such as (generalized) additive separability ((G)AS). The advan-
tage of WS over (G)AS is that WS allows for interactions between
regressors whereas (G)AS does not permit any interactions. The es-
timators use marginal integration and are shown to have a limiting
normal distribution and a convergence rate which is the same as that
of an unconstrained nonparametric estimator of a regression function
of lower dimension. An attractive and unusual feature of two of my
estimators is that regressors can have arbitrary convex support and
that the integration regions can depend on the values of the remaining
variables. The estimators can be iterated and I show that under strong
assumptions further asymptotic efficiency improvements are possible.
The computation of the estimators is simple. The performance of one

of the estimators is studied in a simulation study.
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1 Introduction
This paper is concerned with the estimation of the (conditional mean) regression function
a(z) = E(Y1|X1 = ), (1)

for an i.i.d. sequence {(X;,Y;)} with Y; € R, X; € R% There is a plethora of estimation methods
for a. Fully parametric estimation methods offer fast convergence under the assumption of a having
a prespecified parametric form. At the other extreme, fully nonparametric methods allow for the
estimation of a subject to minimal conditions but the precision of unconstrained nonparametric
estimators deteriorates rapidly as d increases. In fact, the loss in precision relative to estimators of
lower—dimensional functions increases with the sample size. This is due to the curse of dimension-
ality (Bellman, 1961, p.97, see also Fan and Gijbels, 1996, p.264).

Since many regression functions commonly used in economics feature many regressors, uncon-
strained nonparametric regression is often not an option. It is hence necessary to impose restrictions
on a. One possibility is to allow a to be nonparametric only in a subset of the regressors and to
specify a parametric form for the remaining ones. Examples are the partial linear model of Robinson
(1988) and single index models.

An alternative possibility is to impose separability conditions. Strong or additive separabilityf]

(AS) assumes that a takes the form

D
a(z) =) g, (2)
j=1
with 2!, ... , 2P nonoverlapping subvectors of x € R? and D < d. Let xy denote the point at which

a is to be estimated. Then AS reduces the dimensionality because for the estimation of ¢7, ‘close’
pertains to the distance between the subvectors 7, and Xf , not between the entire vectors zy and
X;. The standard assumption in the literature is that the dimension of 27, d;, equals one for all
j=1,...,D,ie. the 27 are scalars. The dimensionality of the problem is then reduced from d to 1.
Additively separable models can be estimated by nonparametric series regression estimation (e.g.
Andrews, 1991), by backfitting (Friedman and Stiitzle, 1981, Breiman and Friedman,1985) and by
marginal integration (MI) (Linton and Nielsen, 1995 and Tjgstheim and Auestad, 1994).

MI estimators work by integrating an unconstrained nonparametric estimator a over all dimen-

sions not pertinent to a particular (sub)function. For instance, to estimate ¢’ one can integrate

'See in this context Stone, 1985.



a over x77, a vector whose elements are those of x except those in 2. Although MI estimators
of AS models are themselves not fully efficient, their efficiency can be improved (e.g. Fan, Hardle
and Mammen, 1998). Linton (1997) has shown that using MI followed by a single backfitting step
achieves full efficiency.

Generalized additive separability (GAS) (e.g. Hastie and Tibshirani, 1980 and Stone, 1986)f

assumes that

alw) =m (Zgﬂ‘ <xﬂ‘>> . )

To economists GAS is a particularly attractive alternative to AS in the context of limited dependent

variable models. Consider for instance the binary choice model,

Y =a(X) U, Yi=1(Y7 20), (4)

7

with I the indicator function. Then a(x) = m(a.(z)), with m the distribution function of the error
U; and a,(x) = Z]D:l g’ (7).

If the link function m is known then a can be estimated subject to (B) using the estimation
method of Linton and Hérdle (1998). Linton (2000) proposes a fully efficient estimator of an
important subclass of such GAS models. Horowitz (2001) derives an MI estimator of a subject to
the GAS assumption which does not assume that m is known.

A third separability assumption, weak separability, is used in this paper. The term ‘weak sep-
arability’ is due to Goldman and Uzawa (1964), although the concept was introduced by Leontief
(1947).f My definition, as worded in definition [ll, imposes some monotonicity conditions in addition
to the weak separability restriction per se.

1

Definition 1 A function a is weakly separable (WS) in 2° 2, ... xP if scalar-valued functions

m, g, ..., g" exist such that for all x € RY,

a(z) = a(z’ 2", ..., 2"”) =m(2°, ¢'(2"),... , ¢"(z")), (5)
where m is increasing in g*, ... ,g" and each ¢’ is increasing in its first argument le The subvectors
2,5 =0,...,D cannot overlap and have dimension d;, with dy > 0,dy,... ,dp > 2,D + dy > 2.

WS hence reduces the dimensionality of the problem to d,, = max(dy + D,ds,...,dp), as

opposed to 1 if a is additive in individual regressors. Therefore the dimensionality of the problem

2Generalized additive separability has a much longer history in economics, albeit without the qualifier ‘generalized’.
3 Another early reference is Strotz (1957).



increases no slower than v/d. It is possible to construct a nested version of (E) which reduces
the dimensionality to 2, regardless of d, but the estimators in this paper are only appropriate for
functions a that satisfy (f). The requirement that the groups be nonoverlapping is restrictive. A
still weaker forms of separability, which has not been used in this context, is latent separability
(Blundell and Robin, 2000).

Under WS the role of regressors depends on the group to which they belong, whereas under
(G)AS they are treated symmetrically. In order to exploit the benefits of WS fully, one hence needs
to have some prior information to create a reasonable grouping of regressors.

The most obvious limitation of (G)AS is that it does not allow for interactions between regressors.
WS does allow for such interactions, albeit subject to restrictions.f] Interactions between regressor
variables can be important as the following four examples demonstrate. The first example relates
to returns to education. In the most narrow returns to education model (Mincer, 1974, chapter 2),
0

the difference in expected log earnings between two individuals with the same level of experience x

! PIT guch as schooling and demographics,

depends only on differences in characteristics z = [z',... |z
but not on the experience level itselffi Then returns to education would be additively separable
in xg,z, i.e. a(r) = m(2°) + g(z). With AS, ¢ itself must moreover be additively separable in
the various schooling and demographic variables. For GAS, additive separability must hold for a
transformation of expected log earnings. However, empirical research (e.g. Lazear 1977) has shown
that the way that earnings vary with experience differs across educational backgrounds. WS allows
2° to interact freely with one or more indices of the schooling and demographic variables.

Now consider the case in which a is a multiproduct cost function. There are economies of
scope (Baumol et al., 1982) if the cost of producing multiple products is less than the sum of the
production cost of each individual good. AS allows for no economies of scope and (G)AS only for
very specific ones.

Another potential application is that of hedonic pricing (Court, 1939) models. Cannaday (1994)
explains the prices of Chicago appartments in terms of a number of appartment characteristics
including the living area, number of bedrooms and bathrooms, amenities, location, view and re-
strictions on pet ownership. Although Cannaday uses a regular linear regression model, which is
trivially additively separable, there are arguments for a WS structure. Under AS the value of an

extra bathroom is independent of the number of bedrooms. Moreover, the value of bedrooms and

4See Blackorby et al. (1991) for a lucid discussion of the various forms of separability.
°I thank David Green for this example.



bathrooms is under AS assumed independent of the location of the appartment and its size. WS
assumes the existence of indices — perhaps ones for size, amenities, location and regulations —
which can freely interact with one another.

Such limitations are not restricted to models with continuous dependent variables. In binary
choice models, for instance, the same issues arise. If the dependent variable is the mode of transport
chosen to get to work (as in e.g. Train, 1980, and Horowitz, 1993) then the regressors can include
variables relating to the time and inconvenience a particular mode of transport entails, its cost,
the availability of autos and the number of drivers in a household, and the respondent’s household
income.f] If, for instance, the disutility of changing buses twice is the same if the total travel time
is 10 minutes as when it is an hour, then the variables representing the number of bus changes and
total travel time can be additively separated from one another. If not, then a, in (i) cannot be AS
and a is then not GAS. Moreover, even if a, is AS, a is only GAS if the U;’s are homoskedastic.
WS, on the other hand, does allow for some restrictive forms of heteroskedasticity.

It is possible to introduce some interaction into (G)AS models by allowing the 27 to be vector—
valued. Variables that one wants to interact can then be gathered in the same 27 vector. However,
most theoretical results do not support vector-valued z7. Moreover, the dimensionality of the
problem is then the same as that of the maximum of the dimensions of the 27 vectors, which
may not be less than the dimensionality under WS. Finally, under the vector form of (G)AS no
interactions would be allowed between elements in different 2/-vectors, which may necessitate the
use of bigger groups than in the case of WS and hence a smaller degree of dimension-reduction
than could be achievable under WS.

The choice of the type of separability to impose, if any, ultimately involves a trade—off between
bias due to misspecification and a greater variance because of the greater dimensionality. On this
scale WS is located somewhere between GAS and an unconstrained estimator. Since (B) and (B)
imply (B), the estimators proposed in this paper will consistently estimate any regression functions
a which satisfy (B) or (). However, if the model is truly (G)AS then estimators that are specifically
designed to estimate (G)AS models are likely to be more accurate.

The proposed estimation methods use marginal integration. Unlike most estimators in this lit-
erature two of the three estimators I propose allow for arbitrary, possibly infinite, convex support.

General convex support could be useful because in many instances particular combinations of re-

6Train studies a multinomial choice problem rather than a binary one. Horowitz uses a semiparametric estimator
of a single index model with a more limited set of variables.



gressor values cannot occur. Indeed, I doubt that there are any 300 square foot appartments with 4
bedrooms. My approach uses comparison functions which allow the integration regions to depend
on the values of variables which are not integrated over. Instead of using my approach, one may be
able to circumvent the support problem by trimming out observations to make the support of X;
the Carthesian product of the supports of elements in the X;-vector. However, unless the support
of X is close to a hypercube, such a procedure can be very inefficient.

Like other work in this area I assume that the regressors are continuous. In most economic
applications continuity of all regressors is not a reasonable assumption. Since my estimator does not
use derivative estimators, it is probably possible to extend the results to allow for discrete regressors
(see Delgado and Mora, 1995). Equally problematic for many empirical economic applications is that
none of these methods (mine included) allow for endogenous regressors. Allowing for endogenous
regressors in nonparametric models is difficult and can only be achieved under strong assumptions
(see e.g. Florens and Renault, 2000, Newey and Powell, 1990, Newey, Powell and Vella, 1997, Pinkse
and Ng, 1998, and Pinkse, 2000).

As mentioned earlier, with (G)AS it is possible to improve asymptotic efficiency by the use of
a multi-stage procedure (Linton 1997, 2000). Indeed, it is then possible to achieve, what Linton
calls, ‘full oracle efficiency’, i.e. asymptotic efficiency is as good as if the remaining components
were observed. Under strong conditions a similar result applies under some circumstances for one
of the WS estimators proposed here. The procedure involves combining iterated and noniterated
WS estimators.

There are other uses for iteration. Because of the separability constraints, a can be estimated
consistently in some regions outside of the support of X; provided that separability holds globally.
It may hence be possible to use estimators that require strong support restrictions in a second step
after a is first estimated using my method, provided that a is known to satisfy WS.

The outline of this paper is as follows. Section P introduces the three new estimators. The main
result is contained in section B, which is followed by a discussion of ways to recover the structural
components of a and the benefits of iterating the procedure. A simulation study of the properties

of the estimators is in section fl. The appendix contains all proofs and derivations.



2 Estimation Methods
21 dy>1,D=1

I propose three closely related estimation methods which I for ease of exposition introduce for the
case dy > 1,D = 1. The formal results are in section B and apply to any regression function

satisfying definition [ Thus,
a(z) = m(a", g'(a")). (6)

Recall from definition [] that @ is monotonic in g' and ¢! is monotonic in x{. Then for any positive

function \* for which the integral exists,

2 = [ ooy =m0 (g )i,

A

for some monotonic function v*. Since m and g' cannot be separately identified from (ff), one
needs to impose identifying restrictions in order to estimate ¢!, m individually, but not in order to
estimate a. Separate identification of m, g' can be achieved by fixing A\*. This issue is discussed in

section [I.1. Here the focus is on the estimation of a at some point zy = (z3, z}).

0 1

Note that a(z) = a(zo) whenever 2° = z{ and g'(z') = ¢'(z}) or equivalently when z° = z and

g'(z') — g' () = 0. A possible estimator could then use a comparison function x' like

X (@) = x' (=", ) = g'(z0) — g' (") = /(a(l‘o, 7p) — a()) X" (2°)da". (7)

X' can be estimated by replacing a in ([]) with a fully unconstrained Nadaraya-Watson (NW)
(Nadaraya, 1965, and Watson, 1965) kernel regression estimator. The NW estimator requires the
practitioner to choose a kernel k, i.e. an even function which integrates to one, and a bandwidth h,
whose choice depends on the sample size.ﬂ If the argument of k is a vector £ then k(&) = H?il k(&)),
where d¢ denotes the dimension of . Let moreover K (t) = k(t/h)/h and K;(z) = K(x—X;). Then
the NW estimator is

Z?:l Ki(2)Y;
N > i Ki(x) "

with n the number of observations. y! can then be estimated by

a(x)

L) = [ (@0, ab) - )N () o)

“For ease of notation the bandwidth is chosen to be the same in every dimension. This is not necessary.
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Because a is integrated in several dimensions in ([), the dimensionality of the problem of estimating
Xl is d; as opposed to the dimensionality of the problem of estimating a, which is d. As a result,
Xl converges faster than does a. In fact, the convergence rate of Xl is generally the same as that
of a Nadaraya—Watson estimator of dimension d; using the same input parameters k, h. It is then

possible to construct an estimator of a(xg) that is more efficient than a(zg), namely

> Ko(X))K (X' (X)) AY,
2?21 KO(X?)K(XI(Xil))Ai ’

(10)

g, (7o) =

with Ko(X?) = K(2§ — X?) and where the A;—factors allow the practitioner to trim out or give less
weight to particular observations. If the lefunction were known, ag, would simply be a Nadaraya—
Watson style estimator of a (dy 4+ 1)—dimensional regression function. Here the convergence rate of
ag, is that of a Nadaraya—Watson estimator of a max(dy + 1, d;)-dimensional function using the
same input parameters. Since max(dy +1,d1) < do +d; = d a dimension reduction is achieved. ag,
uses generated regressors. Other examples of the use of generated regressors in a nonparametric
context are Ahn (1997), Horowitz (2001) and Rilstone (1996).

The estimator ag, is straightforward to implement, although it does require numerical integra-
tion. However, ag, has two problems. It does not allow for an infinite integration region (i.e. A*
must be zero outside some bounded set) and, more importantly, it assumes that the integration
region is independent of the variables that are not integrated out. The problem with a constant
integration region is that a does not estimate a consistently outside of the support of X;. If the
support of X; is not the product of the supports of X{ and X{, then the integration region has to
be limited to values z° for which x = (2%, z') is in the support of X for all z! in the support of X{.

The convex support problem can be fixed by using a weight function A (in lieu of \* in ([))

which can depend on both z' and x}, i.e.

) = [ ale®, o) — o) Va2V (o, ),

) = [ (@) - o) Va2V (o, e (1)
With ([L1), a practitioner can choose A' in such a way that the integration region for each (z',z})-

pair is the set of values z° for which both (z° z') and (2° x}) belong to the support of X;. I have

however been unable to show that my results hold for

A~

fow = E?:l KO(X?)K(f(l(Xil))AiY;
S

T KoK (U (X)) A (12)




when the integration region in ([Ll)) is infinite.] Moreover, even when A' is positive only on a
bounded set, the estimator ag, proposed below has the same asymptotic properties as ag,, albeit
for a different choice of A-function. I nevertheless provide theoretical results for ag,, also, since
it allows for individual estimation of the ¢! and m-functions subject to identification restrictions,
unlike the two estimators proposed below.

I now propose two estimators which do allow for infinite integration regions. They use compar-

ison functions !, 7! defined by
V) = [ (ala, ) — ala®2h) o) Fla?, AN @ 2N (0, ),
at(xt) =4 (&) /6N (2h), with §'(z /f 2 ) f (20, 2p) A (20, 2N (20, ) da”,
where f denotes the density of X;. 7! and 7! can be estimated by
Al (') = /(d(fﬁoaﬂ?é) —a(x)) (2", 2") f(2°, 2p) N (), & )N (2°, f ) da”, (13)

(') = 42" /6 ("), with §'(z /f Fa® 2N (2, YA (20, b)) da®. (14)

Unlike 4!, 7

corrects for the fact that integration regions are different for different (), z')-values.
This is important because 7' can be close to zero, not only because a(z°, ') is close to a(x?, z}) but
also when 6'(z') is small. The second step estimator will then give too much weight to observations
in the tails of the distribution.

7! corrects this problem, but has the problem that it may have a greater (small sample) variance
than does 4! because of the denominator term. s, sy are identical to ag, defined in (@) except
that ¢! is to be replaced with 4!, #!.

A related problem with all three estimation procedures a is that for some values of z!, x{, &' is
very close to or equals zero. This occurs for instance when the support of X? and the first element
of X{ is a diagonal strip and z} and wz}, are far apart. Using observations i for which §'(X}) is

close to zero can make the second stage estimator unstable. I therefore use the A;’s to trim out

such observations in the second stage.

2.2 General Case

The estimators for the general case are similar to that for the case dy > 1, D = 1, but are notationally

more cumbersome. Let as before 27 denote the j—th subvector of z and recall that 2=/ denotes the

8This is because showing uniform consistency of @ on an infinite support is difficult under general conditions.



-0

vector x without 27. Further, z = 27°, 2/ = 2/ and 277 is the z—vector without 27. For any function

w:R? — R, w is the same as w, except that the arguments are rearranged, i.e.
Vo € RY: wi(a 29) = w(x).

It is possible both to use the same function A throughout and to use different functions for different
values of j. From hereon I will assume there is one function A, but all results go through identically
when different A-functions are used.

Let v/ (z7) = [(a’(z7, ) —al (x7, a?)) fi(z, ) fi(z7, e (= al )N (277, 27 )da—7 and let
87,77 be similar generalizations of §*, 7!

Equations (IT), (I3) and (I4) generalize to
;W@ﬂ:i/@%fﬂx@—dﬂfﬂxﬂﬁﬂfﬁmﬂymfﬂ%ﬁmﬂ,%ﬁmgAzﬂﬂﬂ
_ / (@ (2, a) — (077, 7)) fa,29) (2, )N (), 2V (2 af)da T (15)
P(al) = [[(@ ) = a1 0) P ) P )N W o), (16
i (@l) =4 (27) /6 (@),
wnh8qﬂ)::/f%xjﬂ@f%xaxnx%xjﬂﬂA%xjﬂﬁymﬂl (17)

The estimators of the WS function a are then
. Do Ko(X 7Xz)AY’ - D i 1K0(X17%)A'Y‘7 b = > iy Ko(X) ﬁz)AY7
> i Ko( X7, i) A > i Ko( X7, 40 > i Ko(XP, ®i) A
with Xi = [%,- X005 % = Bl AP A = XD, &= (R RPT A = w(XD),
Ay =TI, A and A = AJ(XT).

3 Main Results

I now state my assumptions for asymptotic normality of the estimators agy, ds,, ds, defined in ([[§).

Partition the vectors 27 = [27!, (292)T]7, with 27! a scalar and x7? possibly vector—valued.

Assumption A {(Y;, X;)} is an i.i.d. sequence with for some €, > 0, E|Y[*" < co. The dis-
tribution of Xy is absolutely continuous. The conditional mean function a, defined in ([1), satisfies

definition [l and is increasing in x't, ... 2P

The existence of moments greater than four is strong but not unusual. Let § = H?:l S7 and let

S c R,

10



Assumption B 1z is an element of S* = S x S with 87, j =0,... , D open, convex and bounded.
For any j =1,...,D and some practitioner—chosen nonnegative function X,

§(29) = 0= 2/ ¢ 87, with S’ the closure of 8.

The support restriction in assumption B is weak. It requires that the probability that (X D, g(Zl))
lies in a small neighborhood of (xg, g(zo)) is positive. If this restriction were not satisfied, it would
also not be possible to use the unconstrained estimator. Note that S* is not the support of Xj.
Indeed, the support of X; can be R? and the regions of integration in the first step can be infinite,

also.

Assumption C A : R©% — R is nonnegative and positive only on S.

Definition 2 W, , is the class of functions w : R% — R for which w’s r—th partial derivatives
exist and are bounded and continuous.

Let v = af.

Assumption D For somer > 2, f,v, A are boundedly integrable, X is bounded and

0w

()2

EWip, w=fir,A\ j=1,...,D.
The variance function o*(z) = V(Y1|X, = x) is once partially differentiable.

In most cases, the existence of four derivatives in most directions and six in some is sufficient for
(se, ® = 7, T, X, to have the same rate of convergence as an unconstrained nonparametric kernel
estimator of a regression function with d,, regressors using the same choice of kernel. When fewer
derivatives exist, then ag, usually still converges faster than the fully unconstrained estimator a,
but the degree of dimension reduction attainable is then less.

It is possible to choose a function A that is many times differentiable and positive only on an
open convex set. An example is the function A(t) = ®(1/(1—|[¢][*))I(]|¢|| < 1) with I the indicator
function and ® the standard normal distribution function.

In section [] I mentioned that for the results relating to ag, it is necessary to restrict A. This

condition is expressed in assumption [, which does not apply to ag., Gsx-

Assumption E )\ is positive only on a bounded set, on which f is bounded away from zero.

11



Assumption F The kernel k is a product kernel, i.e., k(§) = Hfil k(&) for some r + 2 times
differentiable r—th order kernel k with exponentially decreasing tails, i.e. [ k(t)dt =1, [ k(t)t*dt =0,
s=1,...,r =1, and [ |k (#)t*|dt < 0o for any 0 < s < oco,u=0,...,7r+2.

Assumption [F] imposes strong conditions on the choice of kernel. Since the kernel is chosen by the
practitioner, strong conditions on its choice do not limit the range of potential applications. For
any r, there are kernels that satisfy assumption [f]. In particular, for » = 4, the scalar-argument

kernel

k(t) = (3 —19)6(t)/2, (19)

with ¢ the standard normal density, satisfies assumption [E.f]

Let for some ¢ > 0,
cp = max(?d —min(dy, ... ,dp),d, + 4) +e.
Assumption G
n~th™ = o(1), nh*tm =0O(1). (20)

Assumption G is easy to satisfy. To obtain convergence at the optimal rate, one should choose the
bandwidth h ~ n~/(2r+dn) such that the conditions in (R0) hold when r > (¢, —d,,)/2. For instance,
when d=5,D =2,dy=1,dy =dy =2,d,, =3 and (¢, — d,;,)/2 = (8 +e —3)/2 = (54 ¢)/2. Since
€ can be chosen arbitrarily close to zero, r = 4 suffices.

The same bandwidth is used in both stages of the estimation procedure. This is not essential
and indeed generally not advisable.

I now proceed with the statement of the main result. Let ¢ be one of v, 7, ¥ and let f;” denote

the joint density of (X7, ¢(Z1)) conditional on A; > 0. Let for any function w
Au(w) = E(w(X)AX)[XY = 20, 9(Z1) = g(20), A(X1) > 0) £ (x5, 0)po, (21)

and A, = A(1), with py = P(A; > 0). Further, let for any function w : R — R,

da
Al (z) = A, (2;5} (W - M) (27, -)\IJZ) /A, (22)

Ozl

9There is evidence that higher order kernels do not work well in samples of moderate size. An alternative technique,
which may be preferable in practice, is that of local polynomial estimation.
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where W/ (29) = Wi (27) = 1, Wi(a9) = 1/67(27) and (w - A)(z) = w(x)A(z). Let further Al =

owt

Al (X;). Finally, let p, = n=Y2p=%/2 ¢ = lim,, ., p;'h" and let B, B, B, be some finite numbers.

Theorem 1 Let assumptions [A-0 and [F-]G hold. Then

i (a5 () — alzo) & N(IB,.0,). i (ass(w0) — a(e)) 5 N(B,. V). (23)

and for ¢ =y, T,

V, = ko (I(do +D=d)V0+ ) I(d; = dm)vz> : (24)

j=1

with k = [ k*(t)dt, and
V= Au(oPN)/AND), VI = Fu(a)E((oi0n])*1X] = o), (25)
with f,; the density of X and 0? = 0>(X,) where 0(z) = V(Y1 Xy = z).
If assumptions [A-{G hold then moreover

o (asy (o) — a(z)) 5 N(€B, V), (26)
with V, =V, .

1/Gr+dm) which results in a convergence rate

To achieve the optimal rate of convergence, h ~ n~
of n="/@r+dm) If the bandwidth sequence is thus chosen, the asymptotic bias is nonzero. The
asymptotic bias can be removed by undersmoothing, i.e. choosing a bandwidth sequence which
goes to zero at a rate faster than the optimal rate. Note also that if dy + D > max;— . pd;,
then the age—estimators have the same asymptotic distribution as the NW estimator with known

g%, ..., g". In other cases the VJ-terms contribute to the asymptotic variance.

The asymptotic variance V, is estimable, as the following theorem shows. Let

Ajw)=n"" Z Ko(Xi, ¢i) Aiw, (27)
i=1
and
Pl (x) = Ko(XY, 4,7 ) Ko (ah) AN (279, XT). (28)

A }/t_d(xo)

Rl,(v) = P ()], G X)), forw=u,f, (29)

where W!, = Wi (X7), with \i/;(xﬂ) = @%(aﬂ) — 1 and W (27) = 1/67(27), and ¥ is the numerator in
(B) divided by n.

13



Theorem 2 Let assumptions [A-D, [AHG hold. Vs in ([24) is consistently estimated by

D
Ve = km <](d0 +D=d)V0+ Y I(d; = dm)172> : (30)

J=1

where VO and Vi are estimators of VO and Vi defined in (24) and are given by
Ve =0ty Ko(XD, @A (Y; — alxo)) /AY(D), (31)
i—1

and

=t Y (0 Y (RO, - ) ) 32

=1 t=1

If in addition assumption [B holds, then V), is consistently estimated even when X in ([33) and ([28)
is replaced with N/ f7.

4 Further Issues

4.1 Separate Identification of m and ¢',... ,¢"

It can be of interest to obtain separate estimates of m and ¢, ..., ¢”. In section P I mentioned that
it was possible to achieve such identification by fixing the choice of A* when using ag,. Doing so
will result in estimators of g7, m which converge at rates O,(n~/2h=%/2) and O, (n=1/2p=(d+D)/2),
However, achieving identification by choice of an input parameter may be undesirable and can be
avoided. Here I propose two identification conditions which neither depend on the choice of an
input parameter nor on the distribution of the random variables. The two identification conditions
are motivated by the estimation of a cost function and can be replaced by similar conditions if such
alternative conditions are deemed more appropriate for a particular application.

The cost of producing z° units of output when the vector of input prices is ' is m(2, g*(z')),

where ¢! is the unit cost function. A natural identification condition, therefore, is
Vg' :m(l,g') =g, (33)

i.e. the production of one unit of output costs g'. Since a(1,z') = m(1,¢'(z")) = g*(z'), g' can be

estimated by
' (x') = agae(1,2Y).
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An estimate of m, 7, can then be obtained by nonparametrically regressing Y; on X?, g*(X}). It
can be shown that 71 converges at a rate of O,(n~"/2h=(%+P)/2) [ Trrespective of the dimensions,
m hence converges at the same rate as when the g—functions are known. The convergence rate of
g' is however slower than optimal if d; < d,,.

An alternative identification condition is
Vo't gt (2™ 1) = 2. (34)

Condition (B4) does not afford a straightforward interpretation in the context of cost functions, but
could be replaced with g*(¢,... ,t) = t, which is implied by g(1,...,1) = 1 and homogeneity of the
unit cost function.] Two implications of (B4) are that m(z° ¢') = a(z, (¢*,1)) and that for any

function g which is a monotonic transformation of g,

0'(ah) = g (g (),

with 2(1

; the inverse of the function 2(1)(x11) = g'(z'',1). m can hence be estimated by
’ﬁ’L(l’O’ gl) = dS' (mO’ (gla 1))

If the integration region is finite and independent of the values of the variables which are not
integrated over, then a monotonic transformation of g* is g*(z') = [ a(z?, 2")A*(2°)da®, as we saw

in section QE gl can then be consistently estimated by (see Pinkse, 1999)
g'(z") = /d(xo,asl))\*(:vo)d:vo. (35)

Let g(l)(x”) = §'(z",1). Assume without loss of generality that ¢'(z') € [0,1] and that 9o is
) 1
which satisfies (i) g~ (t) =0, t < 9(1 (0), Gi) g~ () =1,t > g(l)(l), and (iii) for any g(l)(O) <t<

increasing in a neighborhood of [0,1]. Let g(j be the inverse of g a and let g ) be some function

)
g(l)(l) there exists some s* such that ga)(t) = s* and for which g(l)(s*) =t. Then
i) = 7, (3 (oY),

converges to g' at a rate of O,(n~1/2h=41/2). A proof of this result is in lemma P in the appendix.

10T establish this result would entail a tedious repetition of the same arguments as were made in the proof of
Theorem 1; to conserve space I have not done so.

Note that if homogeneity itself is imposed efficiency achievements in addition to those possible with weak sepa-
rability are feasible. See Tripathi (1997) for a discussion of imposing such conditions in nonparametric estimation.

12The assumption can be relaxed by using an iterative procedure, i.e. by replacing @ in (BH) with dge. See section
-] for a discussion of iterative procedures.
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The convergence rates with (B4) are hence complementary to those with (B3). If dy = d,,
condition (B3) yields estimators which converge at an optimal rate and when dy + D = d,, it is
(B4) which yields such estimators. Finally, both identification conditions above go through similarly
when D > 1.

4.2 TIteration

It is possible to iterate the estimator and, under certain circumstances, to improve the asymptotic
efficiency of the procedure by combining uniterated and iterated estimators. I demonstrate the
methodology using the simplest possible case, i.e. when ¢ =y, D =1, A = 1, X does not depend
on z! and X| has compact support.[

The iterated estimator of aq is then ésx, which is defined as ag, with X' replaced with
) = / (asa(2®, ) — a2, ")) A* (2°)da®, (36)

Note that I use the unconstrained estimator a(z? z') in (Bf) because the fact that a(z? ') is
estimated is immaterial for the asymptotic distribution of ag,. Appendix [A.T] contains a somewhat

heuristic derivation which shows that

sy (20) — ar() & —(asy (o) — ar(x0)), (37)

where G; is the NW estimator with regressors X!, x; and &~ means ‘up to terms which converge

faster than agy (o) — a(zo) and ag, (o) — a(x,). Hence

dcy(w0) = (asy (o) + sy (20)) /2 ~ dr (o).

Therefore if dy + 1 = d; combining iterated and noniterated estimators in the above-described
fashion removes the generated regressor component and the estimator subject to separability is
then asymptotically as efficient as if x* were observed. When dy + 1 > d; this had always been the
case and when dy + 1 < dy, there are additional terms which impact on the limiting distribution.
The result does extend to the case when D > 1, but not to ag,, ag regardless of the choice of A
and it does not work for dg, when A is not constant or indeed when A’ depends on z7. Tt is possible
that the methodology can be generalized to cover these cases, also, but such a procedure would be

complicated.

13These conditions do not quite match those of theorem 1, but the argument and derivations simplify considerably.
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5 Simulations

The simulation study compares ag, to the unconstrained estimator a using the six models listed

below.[] T have chosen these particular models to highlight performance issues rather than concen-

Linear Y = Zf:l Xt + Ui,

Probit-Like Y, =® (2;11 Xz-t) U,

Product of Logs Y; = ( fil(Xg)z) Hle <sgn(Xl.jl) logyo ((X})* + Zf;l(Xft)Q)), if dy > 0,
Y, = Hle <arctan(2§lil X)) /m+ O.51>, if dy =0,

Probit Y, = I, X+ U; > 0),

Flat Y, =1,

(1.5* <arctan(2?i1 X,L-lt) /7r+0.51> )
Arctan-Power Y, = ( fil(Xiot)Q) ,if dy > 0,

(1.5>«< (arctan( ;21 Xi2t) /7r+0.51) >
Y, = (arctan( XL T+ 0.51) ,if dy =0,

trating on models with obvious empirical relevance.

I used the Mersenne-Twister random number generator (Matsumoto and Nishimura, 1998)
because of its exceptional properties.[ In all cases are the regressors independent and have N (0, 1)
distributions. The errors are always independent of the regressors and are N (0, o%)—distributed for
o = 1,2. The linear and probit models are standard. The probit—like model was included to compare
performance when the systematic component of the model is bounded and indeed small relative to
the variation in the errors. The product of logs and arctan models were included to simulate
interaction terms. The arctan—power model does not reflect any model of interest in economics,
but is introduced to assess the sensitivity of the results to the choice of relatively familiar stylized
models.

In all cases A was chosen equal to one and A was the function
Az) = (1 + exp (e‘l/(l_x”Q/(dC/Q\)))) ;

where Cy = 4.[9 The choice of C'\ was motivated by the results of preliminary experiments. A good

choice of C'y is dependent on the scaling and distribution of the regressors.

14T attempted to make a comparison with the Horowitz (2001) estimator, but the computer program I wrote was
insufficiently fast to conduct large scale simulations.

15Tt apparently has a proven period of 219937 — 1, excellent distributional properties and is exceptionally fast.

16Tn the experiments, the choice of A was based on the entire vectors X;, not just on Z;, as in the proofs.
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I used the Mersenne-twister random number generator. The number of observations was either
100 or 200, the number of regressors 3, 4 or 9.[]

When the number of regressors was 3, dy = D =1,d; =2, whend=4,dy=0,dy =dy =D =2
and when d =9, dy = 0,d; = dy = d3 = D = 3. The number of replications was always 1,000. The
regression function was estimated at X;, i = 1,... ,n, and the results were aggregated across all 7,
and across replications.

The MSE entry in the tables is 1,000 times the average mean square error across all observations
and all replications, MSE99 is the average mean square error over all replications, dropping the worst
1% in each replication and MDAE is the average median absolute error, where the average is taken
over all observations.

The aggregate results show that ag, can be unstable. This is not surprising since I chose A, h to
be the same throughout and the estimator at points X; at which A = 0 is then a weighted average
over observations that are far away from X;. Moreover, at such points the denominator of ag,
is likely to be close to zero and can even be negative because of the use of higher order kernels.
Nevertheless, if even 1% of points is dropped at each replication, ag, frequently performs better
than does a, particularly when the error variance is large relative to the variance of the structural
part of the model. The results for d = 3 versus d = 4,9 for the ‘product of logs’ and ‘arctan’ models
are quite different given that the nature of the models for d = 3 is different from the other two.

Aggregate results obscure the strengths and weaknesses of ag,. As it turns out, ag, performs
particularly well (relative to a) at those points x at which data are somewhat sparse but for which
there are relatively many 4 for which a(X;) is close to a(z). It performs poorly at points that are in
the tail of the distribution, particularly so when there are few observations with similar regression
function values. In regions with many data points, both estimators perform well.

To illustrate the variation in performance across points, consider figures la—1d. In all cases I
used the linear specification and d = 3,dy = D = 1. Data were generated as described earlier with
n = 100. I ran 1,000 simulations and estimated the regression function using ag, at four different
points, each point corresponding to one of the four graphs. Along with the density of ag, —a I have
plotted a normal density with zero mean and variance equal to the estimated variance of ag, — a.
From figures la—1d, it is apparent that ag.(zo) is biased downward when most of the data would

have regression function values that are less than a(z() and upward if the converse is true. It is

17Speed of computation is not generally a constraint for individual data sets. Kim et al. (1999) propose a method
which improves the computational efficiency of AS estimator. I have not investigated the possibility of devising a
similar method for my WS estimators.
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likely that this problem would be mitigated when a version of ag, using local polynomial estimators
instead of NW estimators would be used.[jj The results also suggest that even in moderate samples
asy is approximately normal, although the results may be more favorable than would have been the
case had I used a highly nonlinear model for these experiments.

The most interesting aspect of this experiment, however, is a comparison of the variances. The
estimator variance is lowest at (0,0, 0) since the regressor density f is highest there. Normally, the
estimator variances at (—1,1,—1) and (1,1, 1) would be comparable since f(—1,1,—1) = f(1,1,1).
Note however that there are many more observations i for which a(X;) = X1 + X2 + X3 is close to
a(—1,1,—1) = —1 than there are such observations which are close to a(1,1,1) = 3. The estimator
variance at (—1,1,—1) is in fact only a little larger than that at (0,1,0), despite the fact that
f(0,1,0)/f(—1,1,—1) = e. This suggests that ag, does succeed in achieving the desired variance

reduction.

6 Conclusions

I have proposed three estimators of regression functions which are weakly separable. Theoretical re-
sults show that the convergence rate of these estimators is comparable to that of the unconstrained
Nadaraya—Watson kernel regression estimator of regression functions with fewer regressors. Simu-
lation results in this paper suggest that in many, but not all, cases accuracy improvements indeed
arise, provided that the separability assumption is correct. The asymptotic distribution of the esti-
mators is normal. Computer simulations indicate that the approximate normality already obtains
in small samples. However, although the bias does not feature in the asymptotic distribution it does
have an effect in samples of moderate size. This problem could potentially be remedied by using a
variant of the estimator which uses local polynomial estimators instead of Nadaraya—Watson ones.
Nevertheless, the method proposed in this paper does reduce the estimator variance as expected.

I show that it is possible to identify and estimate the structural components of the separable
structure individually. Doing so, however, results in a more complicated estimation procedure. I
also show that it could be beneficial to iterate the estimator. Indeed, under strong conditions the

use of generated regressors instead of observed ones is of no asymptotic consequence.

18The theoretical results assume the use of NW type estimators. There is no reason to believe that the results of
this paper could not be obtained for local polynomial estimators, but proofs would be longer.
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A  Proofs

A.1 Some technical lemmas

The following lemma was inspired by theorem 2.1.1 of Prakasa Rao (1983) and uses a method
developed by Parzen (1962).

Lemma 1 For any w € Wy, .,

/Kt—,go Bt — w(o)

sup
LoeR%

Proof: Use the substitution t « (¢ — &y)/h to establish that

/K t = Go)w(t)dt —w(&) == /k(t)(w(§0+th) — w(&o))dt

Let ci,. .. , ¢4, be constants in [0, 1] and let #;,&; denote the j-th elements of the ¢, {y—vectors.

—o(n").

Note that by assumption E, |/ k(t)t;dt =0 for s=1,... ,r — 1. Then applying the mean value
theorem in each direction in turn and using the Laplace transformation for the remainder term, it

follows that

B / k() (w(Eo + th) — w(&o))dt (38)
= /k(t) 122 (€01 + c1trh, &o2 + tah, . .. ; ode + tdgh)dt
1

—I—hJT!/ (t) (@ (801, §02 + 2Dy -, Goue + tach) — w(&o))dt

= Z/ t; 88 2 (one- s Eogos g + itshy Eo g + g , §ode + tah)dt. (39)
The RHS in (B9) is O(1), uniformly in &y by assumptions [J and [f]. O
Lemma 2 Let {&}, & € R% be some i.i.d. sequence of random vectors with continuous density.

Let ¢ € N% , and let

I<]
Ko = K (40)

with |¢| = Ejil Sj- [f {w;} is an i.i.d. sequence of random vectors such that for some integer

p* >0 and some C > 0o V& : E(||w1||P"|& = &) < C, then

E||K9(&)

‘1Z|IK (&)w

(RI=P)de=p Il (41)

—O( (1-p*)de— p|<\) (42)
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Proof: Taking expectations on the left hand side (LHS) in (£2) gives ([1), whose LHS is bounded
by

CEIKO ()P = Ch e Bk (¢, /h).

Since k()] is itself a continuous, albeit usually not differentiable, function the same substitution

can be applied as in lemma [l and hence E|k©) (&, /h)| = O(h%). O

The following is a general lemma concerning V —statistics, which entails a small modification of the

theorem on page 188 of Serfling (1980).[]
Lemma 3 Let ¢ : R?*? — R be a possibly asymmetric V —statistic kernel. If
EG2 =0, E|Cu| = o(ncn), ECIQ = 0(”202) (43)

then

n

n’ Z Z Gt =n - Z EiGit + Etctz + Op(cn) (44)

t=1 i=1

Moreover, provided that the limit is finite and positive,

ctn? Z Z G = N(O, nh_{lolo n~ e P E((CGr 4 Ci2) (G + C13))> (45)

t=1 =1

If in addition to @), E((Cm + C12)(Ga1 + C13)) = o(ncy), then

n2 Z Z Gt = 0p(cn). (46)

t=1 i=1

Proof: First (i4). Let ¢*(z, %) = (¢(z, %) + ((&,2))/2. Then

D D) BRI B) W +n‘QZ<u (47)

t=1 i=1 t=1 i#t

Apply the theorem on page 188 of Serfling (1980) to the first RHS term in (f7). The second RHS
term in ({7) is also o,(c,) because E|i1| = o(ne,) by (E3). (E7) and (E6) follow from the fact that
the first RHS term in (f4) is an i.i.d. sum. O

9The result is originally due to Hoeffding (1948).
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A.2 Approximation to VV—statistic

When convenient I will use the alternative notation P,§ =n~'> " & PE = EE;. Let
Vi =h"+n VPR ogn, by = h" 4+ n V2R % 2 logn, j=1,...,D,

such that by assumption
bug = OWWy), (W) =o(¥ny), j=1,....D.

Finally, let ¢, = max;—y . p¥n; = h" + n~Y2h=4/2logn, with d, = max(dy, ... ,dp).

Lemma f is required to transform x into form similar to that of 4,7

Lemma 4 In this lemma I use the shorthand notation X = N (z™7,23), N = M (27, 27) and

similar notation applies to other symbols. Let
) = [~ 7 - ) FE)R 96, =1, D

Then sup X (27) = X (27)] = 0p((¥5)?).

xd

(50)

Proof: Horowitz (1999), lemma 1, provides a uniform consistency result for the numerator and

denominator of kernel regression estimators. Here, together with lemma [ll, it implies that

sup, | f(x) — f(x)| = 0,(¥7), sup, |(x) — v(x)| = 0,(1*). Hence, recalling that M = X/ f/,

suplx = = sup %AW@Z =y
=gp/mﬁ—3m(ﬁ?%gﬁ$v%mﬂ—v+%«ﬁﬁ
= sup /(Aé = J307 + (ag = ) (P f§ = PID)N Noda™ = | + 0, ((47)°)
= 0p((¥7)7),

where the third equality follows from

PR-F-R | PR-P-R R PR

fifs fif] Fifififs

noting that f7, fg are bounded away from zero whenever )\, )\f) > 0 by assumption [H. O
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Let {A;}, {B:} be sequences such that all elements in a sequence either equal 1 a.s. or equal Y;.

For some functions w,w* : R — R, let
Naw(@) = N2)w(z) f(2)B(A|X) = x),  faw(r) = Mz)w(@)P(K(2)A),
W (7, ) = / (@) (277, 8 )da ™, @y (0, 7)) = / Mo () e (277, 2 )™,
B @) = [ sl (a0, 50,

BQB;ww* (':Ej’ j]) = n_l Z Kt<x])(>\] ' wj)(Xt_j7 xj)njB,w* (Xt_jv i‘])"415

t=1

In particular, let n4(z) = na.1(z) and similarly for 7, a, G, 3,b. Thus,

:Yj(x]) = @{Y(xjv xé) - &{/1(1;]‘7 SC%), f}/j(xj) = a{Y(xj7 xé) - O‘{/l(xja xé)v
o (27) = aqy (27, 23), O (27) = oy (27, wp), (51)
Xj(l'j) = diy(ifja ) — d{,l(a:j, ) + é4J11;a1(55j> 7)) — dil;la(xja ) + X! (xj)

I now establish uniform convergence of x?,47, #7 to x’,~?, 7/. Because of symmetry, lemmas [ and

ﬁ below equally apply when the arguments (27 and xf)) are swapped.

Lemma 5 For any functions w,w* for which w\, w*\ satisfy the conditions imposed on X in
assumption [0 and for j =1,...,D,

(&]AB;ww* (xj7 l’é) - O[Z;lB;ww* (ij Ié))

- (bzélB;ww* (xj7 [Eé) - EbﬁB;ww* ($j7 336)) - (b]BA;w*w(l%? xj) - EbJBA;w*w(a%v xj))

- ((EBIJ;!B;ww* (.’L’J, I’g]) - O[ilB;ww* ('Ij7 IE%)) - (EB%A;(U*QJ(‘T67 ZE]) - a]‘BA;w*w(x{;? mj)) ‘ - OP(<1/}:(L)2) .

sup

Proof: Assume without loss of generality that w = w* = 1. I establish that the following sufficient

conditions hold.

Sup |07 ) = oo, wh) = Bpalah o) + e )| = 0, ((07)%). (52)
sup| (B (') = EFp(o” ) = (Bl ) = Ebay(a,ah))| = 0 ((07)?). (53)
sup(Bap(wh. ) = BBt o)) = (Fap(ah. o) = Ebap(ai,a))| = 0 (7)), (54)

First (52). The expression in absolute values is

/ (7(2) — na(2)) (T (@, ) — 12, 2d)) dw. (55)
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Again using lemma 1 of Horowitz (1999) together with lemma [I] implies that
sup, [7a(z) — na(z)| = 0,(h" +n~Y2h=%?1ogn) = 0,(1%) (and hence the same applies for

fip — ng). Therefore, (b5) (and hence (52)) is 0,((¥;)?). Now (b3).
Let &(a7) = A K (a7) (/ Ky(x )N (2, 2l (z77, ad)da ™7 — )\j(th,:cj)njé(th,xé)> .
Since 3, 5(27, 2)) can alternatively be expressed as

P (AK (27) [ K(x=))N (277, 29 (a7, a})dx ™), (BY) is (Pn — P)E. Since {&} is i.i.d., lemma 1 of
Horowitz (1999) implies that (P, — P)¢ = o,(n~"/2\/E€2logn). But by lemma [

sup = o),

szJ

/K TN (@ (7 ) da ™ — N (& 2 Y (277 )

and because, again by lemma Q, sup,; E(AlKl(a:j))2 = O(h™4%), it follows that E& = O(h*~%).

So (B3) is 0,(n"Y2h"=%/2logn) = 0,(1hn;) = 0,(1¥) by (Y). Condition (54) follows similarly. O

Let

(@) = {Y(aj 950) + 5}/1(950» 7) — ﬁn(x 530) {Y(‘Tgb a?) =7 (7)),
0% 0" (27) = ﬁn(x Io) + 611(%7 7) = 3% (@),

7 (al) = (al) + (379 (27) — 7 (27)5 (27)) /67 (2),

X7 (2?) = 1Y($J xo) + 5}/1(370»5”3) B{/l(xj f%) - A{Y(zg)v 27) + X ()

+511a1(33 33'0)4'511 1a(@h, 47) — 511 wal@d, xh) = B, al(xévxj)>
¥ (a?) = biy(x xo) +by1<x0= 7) — Z;JYl(x xo) bjnf(l‘mxj) v (27), (56)
S.j($j) = bil(l‘ vmo) + bu(%axj) — &7 (a)
w9 (a?) = m(al) + (‘y’j(fcj)—ﬂj( 7% (a7)) /8 (a7),
) = by (@7, 2p) + by (23 ‘) 0y (l‘] 2p) = by (3, 47)
+bi1 al(x xo) BJ ( ) 11 1a(x xo) bil;al(xg)?xj) +Xj(xj>
(!

= b%’l(xo’ ) - bgq f)) + bn al(xjv xo) - bll;al(%aﬂ) + Xj(fj)7

where the last equality in (@) holds because bjll;la = I;{Y

(
X (27

Now, from lemmas @] and [ it follows that for j =1,..., D,

sup| (77(2) = 77 (a7)) = (39(a) = B (@) = (B47(@) =7/ )| = (@), (57)
sup| (#(@?) = (@) = (%) = BO% () — (BSY (&) = P ()] = 0, ((5)),  (59)
sup| (V(a?) = V(@) = () = BXY (@) = (BI6) =¥ (@) = 0, (570, (59)

using (b1]). A similar result for #7/ requires lemma [j below, and is given in (7).
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Lemma 6 Let w,w* be as in lemma [J. Then
Sllp ’OACZLXB;ww* (xj7 1‘%) - OéZLXB;ww (J‘J ‘TO)| = (¢nJ) (60)
I

Proof: I again assume that w = w* = 1 without loss of generality. Lemma [ and (A§) imply that

the following four conditions are sufficient for (60).
SUP |bAB<x ) — Ebfw(x] )| = 0p(4ny), SUP |bAB(xO7'Tj) - EB]AB(%#/‘M = 0p(¢n;), (61)

sup ’EﬁAB(CE]v-T%) - O‘AB(-’E]" x{))] =O(h"), sup ‘EﬁAB(xO?xj) - ailB(xgvxj)l = O(h"). (62)

First (61). I show the first result where the second follows similarly. Note that
Vg2, xl) — BV, (a7, 2d) = (P, — P)E with & = K (/)N (X7, 290y (X7, 23) A,. Note that
E& = O(h™%) by lemma B (¢ = 0) and again by lemma 1 of Horowitz (1999),
(P — P)E = 0,(n"2\/EE2logn) = 0,(n~2h=%/2logn) = 0,(1y;). Finally (63). T again only
show the first result. In the proof of lemma E, we expressed Bi‘ 527, xé) as (rearranging terms)
[ Ma)nly(z~ xO)Pn<AK(x))dx*j, such that

J

sup |E5Af;13(xju xf)) - O‘AB(Ija xé)|
zJ

= sup

/Mw%@fwwﬁwnmmn—Emmazxﬁ@»
< sup/})\ (77, ) ‘dm Jsup‘E(Kl 2)A1) — E(Ai| X1 = 2) f(z)| = O(h")
by lemma [[. OJ

Lemmas ] and [j have the following consequences (it may help to refer to (B1))).

Sup 37 (@7) = 7 (27)| = Op(tny), (63)

Sup [67(27) — & (27)] = Oplthny), (64)

Sup X (@7) = (@7)] = Op(¥hny), (65)

sup [#(0) =7 (29)] = Oy (v, (66)

sup |(#1(27) — 7 (7)) — (% (27) — Ba% (7)) — (B2 () — 7/ (09))] = o0,((01)?). (67)

xieSi
Result (@) may be less obvious than (@)f(@) But since # — 7 = (§ — v — (6 — 8))/6 + (& —
m)(6 —8)/5, (63), (64) and because §7 is bounded away from zero on & () holds. Finally, (67)
follows similarly from (57) and (B8).
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Let @7 = {27 € & : 4/(27) = 0} and @ = {2/ € & : 4/(2/) = 0}. The following lemma

establishes that 77/ and 7/ are strictly decreasing in 27! in a neighborhood of the set Q7.

Lemma 7 Foranyj=1,...,D,
oy, on’

J J
max o5 (x7) <0, max o (x7) < 0.

o, ) oa’ S IV
Proof: Note that max (’) = — min / — N ) (27 ) (N (27 2)da T < 0,

xieQi Oxil xieQi Ozt

because &7 is assumed compact (which implies that Q7 is compact also) and a is assumed to be

strictly increasing in z7!. The result for 7/ follows from the fact that (omitting arguments)

ol _ o L i
Oxil Oxil 8:6?1

But for any 27 € @7, 77(27) = 0 and 4’ is positive and bounded away from zero on S7. O

Recall that ¢ is one of v, 7, x. Let ¢, ¢* and any other symbols related to ¢ be the corresponding
symbol in terms of v, m, y. The problem with the functions ¢’ is that they can be zero even when
g(z7) # g(x). T therefore approximate ¢ by a new function §.

Let ¢ be a function with the same smoothness properties as ¢, for which for all j =1,...,D, ¢’
is everywhere monotonically decreasing in 27! and identical to ¢/ in an open neighborhood N7 of
Q7. Such a function § exists by lemma, ff.

In lemmas BHIJ I derive a first expansion of dge(xo) — a(zp).

Lemma 8 For any i.i.d. sequence {&} with E|& [T for some e > 0,

WS KN (Kald) - K ZKO RN ) ) = o). (68)

Proof: The following two results are sufficient for (§).

D

Y Ko(X])gAs (Ko((fi) — Kolg:) = Y Kol ) Ko(g)) (@ — qf)) = 0,(pn), (69)
nt Z Ko(X7)& <(Ko(qi) - Ko(@i))

+ Z(m@ﬁ)K&@Z)(@f —q) — Ko(G; ) K@) (@ — qf))) = 0p(pn). (70)

Jj=1
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First (69). Below ¢ is always a D-vector of nonnegative integers and |¢| denotes its largest
element. Choose some @, with 3 < ® <7+ 2. Let ¢, € R be such that ¢, = I(g; = ®) with I the
indicator function. Further, let exponents in parentheses denote derivative order. Then by the
mean value theorem (order ® in each direction) the LHS in (p9) is

D

> Z Ko(XD)&A, ﬁ (%) 11 ((Ké*qu))“ﬁ (Kéq’)(-))*f) , (71)

2<[¢|<® j=1

where (-) denotes some quantity between ¢/ and ¢/. Now, by (63), (63) and(p6),
sup,; |¢ (z7) — ¢ (27)| = Op(1,). Hence

ﬁ(u)| = 0, ™)

§j!

Further, sup,, 1K (¢7)| = O(h=%"1) since k® is assumed bounded. Let k = |k| and let K be
defined accordingly. Thus, for any 2 < || < ®, the LHS summand in ([(1) is

n

0, (1/115]1'“'711 Z

=1

D o
Ko(X0e TT (B8 (@)
j=1

) = O FI7D), (73)

by lemma B. Convergence is slowest, either when || = 2 or when [¢| = ® and || = 1, which

results in a convergence rate of ¥2h=2 +¢2h=*~1. Since 1, = O(p, logn),
YRR+ hm? T =0 (Pn (puh~?log®n) + py '~ log® n)) = 0(pn),

since p,h~2log®n = k" 2log? n + n~Y2h=4/2=21og? n = o(1) and

P2 h=®1log® n = KD "11og® n + (n_1/2h_dm/2_1)¢71h_2 log® n = o(1), which follows from

assumption [ because r > 2, nh=*+4/log?n — oo, and ® > 3.

Now ([(0). I will show that for any s > 0, for any integer 0 <t < ®, and for any j =1,...,D,
sup| K (¢ (+7)) — KO (' (7)) [\ (a7) = o(n ™), (74)
i

i.e. the LHS expression converges at a rate faster than any power of n. Condition ([/4) implies

(70). First, for 27 ¢ S’ or 27 € N7, the LHS in ([/4) is zero by the definitions of A’ and ¢’. But

both ¢/ and ¢’ are nonzero on S/\N” and, since S\ /N7 is compact, they are in fact bounded away

from zero on S/\N7. Since k) has exponentially declining tails by assumption [f| and because h

decreases faster than some power of n, for any ¢, > 0, k&) (c,/h) decreases exponentially in n. O
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Lemma 9 For any function w for which Ww*f is boundedly differentiable, if A.(w) is as defined in

(27) then
Ag(w) — Ae(w) = 0,(1).

Proof: Write

Avw) = Auw) = A —n_IZKo sz(Ko(qz ZKo i) Ky q»(@—qid) (75)

S O 3 Kol ) - qf')) (70

i=1

Lemma B establishes that the RHS in () is o,(pn) = 0,(1). By (63), (b3) and (£6),

¢ — ¢ = 0,(ty), uniformly in i, j and by lemma [}, (76) is hence o,(1,h~") = 0,(1).f Finally, (77)
is the sample mean of a sequence of i.i.d. random variables. I show that the variances of the
elements of the sequence are o(n) and their means are o(1). Let k(t) = k2(t)/ [ k*(t)dt, which is

an even second order kernel. Then the variance of a summand of (@) is bounded by
E(Ko(X?, )M wr)? = O(h=%=P) = O(h~%m) = o(n),
by lemma B, where the last equality follows from assumption [§. For the bias, observe that

E(KO(X?a (11)/\1@01) — As(w)
= E(Ko(X?, @) Awi|A1 > 0)po — E(Awi|Ar > 0, X7 = 20,41 = 0) for (20, 0)po.

Apply lemma . O
Let M; = (Y; —a)/A, and p®(27) = E¢% (27), p* (27) = EG*(2?), and
F Ko(X )A Ml, F [(0()(Z 7Qz)AiMi; 1= 1, oo n. (78)

Lemma 10 Let TV = Ko(X?, G ) AiM;K}(G). Then

D n
(ase(wo) — a(zo)) =n~ ZF + Zn ZT] (@7 — ) Zn_IZTZ.j(,u;‘j —q)) + 0p(pn).
=1 i=1

(79)

20Gee the treatment of the higher order terms in lemma E for a more elaborate discussion of a similar expression.
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Proof: Let I' = dg,A,, T' = a/A, such that (omitting arguments)

~ ].:‘—QA. A~
Gge —a = ——— — (Gge — Q)

Ay — A,
A, '

A (80)

By lemma [ (choose w = 1), the second RHS term in (B() converges faster than does the first.
The first RHS term in (@) isn ty ", F;. Apply lemma E with & = M;, to establish that

n’le—n’le +Zn ZT] —q)) + 0p(pn). (81)

The first RHS term in (BT]) is the first RHS term in ([9). I now establish that the second RHS
term in (BI)) is the same as the sum of the second and third RHS terms in ([9) except for an

asymptotically negligble term. By (57), (59), and (£7),

max | —ql)— (¢’

i=1,...

1) = (1 =) = op((v7)?), J=1....D. (82)
So for j=1,...,D,
—lzKo (Xi, @ VK@) NM; (6] — a)) = (67 = EqY) — (B¢ — q)))
< max |(@ —qf) = @7 = p) = (=) x0Tty KX, 67 ) Ko (@AM
’ =1
by (B2), lemma P and assumption [G. O

In the remainder of the proof of theorem 1, T introduce new symbols G}/, 435, 13, 1135, 1s) below,

which allow me to rewrite ([[9) as
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n

Gse(m0) — alz) = n! Z(F — EFy) (83)
+ Z ! Z T (a7 — ni)) (84)
- Z n! Z TIW(d57 — 177 (85)

+ Zn Z(l — )~ B(T) (17 — o)) (86)
+ I<q=w>2n—1§j:@jw2<éﬁ—u§i> (87)

D
+ ER+ Y BT~ q) (89)
j=1

+ o(pn)- (89)

I now introduce the new notation, after which I provide a brief outline of the remainder of the
proofs. Let KJ, = K(X] — XJ), K}, = K(X] — KJ), but for all symbols not pertaining to kernels,
let A, = M (X, 7, X7), My = M(X;”,z)) and similarly for other symbols. Let further

Gl =KINMNfL, j=1,..,D;its=0,...,n, (90)
and fori=1,... ,n;u=0,1,
d}zu - Z GtOz atu Q}Izu - Z GtzO a’tu (91)

with al, = o/ (X; 7, X7) and aly = o/ (X, 7, z)).
Then each of the b-symbols in (56) can be expanded, e.g.

A .

ij (xO’X] =n"! ZGtOzY;f’
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such that
.] =n Z GtOz atz —-n Z Gtz() ' ago) - ’Yzj = (j}zz - ‘ﬁno - %ja (92)

=n Z GtOZ tzO 5J (93)

Xz =n Z GtOz . atO —n! Z GtzO - atz) + Xz? quO qI'Iii + x{, (94)
it =42 )6 =l (63— 61)/6] = (a1 — G11i0) /6] — ] — 7] (67 — &) (95)
Set
~J _ ~J _
i ) Y 4=7,T, i ) Y1100 4=7,T
@i =9 . Uri =
41i0> 94 = X- Arriss 9= X-

Then from (P2)—(P3) it follows that
Q7 = Wi(dr = di) + 1g = m)mloY.

Now let the symbols u$?, 33, usd, 1l 110 be to @3, 433, 0%, G-, G0, what i’ is to ¢ F] Then
p? = W5t — i) + 1 = g

The expansion in (83)—(89) then follows from ([9).
In appendix [A-4 T deal with (BY), appendix [A.§ covers (B3) and (B4) and appendix [A.§ establishes
that (B3)—(B7) are asymptotically neglighle. First, appendix [A.3 provides some useful lemmas on

generated regressors which are used in subsequent proofs.

A.3 Generated Regressors

For j =1,...,D, let 7 be such that 7 (¢/(27), 2?) = 27! for all 2. By construction ¢’ is strictly
monotonic in 27! and hence 7/ is well-defined. Let W2 be the class of functions w : R% — R for
which 0"w/0&] is continuous, where & denotes the first argument of w. The lemmas below deal

with generated regressors and are used in subsequent appendices.

Lemma 11

8]
a—;ew*ﬂ j=1,....D.

21Gee lemma E
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Proof: Note that
o7 5
o _ 90
o’ Ozl

Higher order partial derivatives of 7/ with respect to ¢/ thus have higher order derivatives of ¢’
with respect to 27! in the numerator and powers of the first partial in the denominator. The first
partial of ¢ with respect to 27! is bounded away from zero and the r + 1-st derivative is bounded

by construction. [J

For any function w : R* — R, let Aly(w) = Afy(w, 25,0) with

0 17,1 .12 _ EZD(uD D2y D2 4

Aft)(w,mO,Q)Z/w(x 7 ’ﬁ );i — ’.T .(q ’flp IEal)
Hj:l 5T (TJ(qJ, 27?), 95]2)

A(t)(w) = A. (w(-,t)). (97)

12

dz'? - - dzP?, (96)

Lemma 12 For any function w : R?** — R and vectors q,t for which both sides exist,

Aly(WAf) = A (w).

Proof: Let w* = wA and let C(z) be shorthand for (z§,71(0,2'%),z'%, ..., 7P(0,2"?),2"?). Note
that from (PG) and (07)

Ap(w) = E(w(X1, )M | XT = 2, 91 = g(20), A1 > 0) £ (2, 0)po

= Do /W* (C(‘T)a t) fX07X12,...7XD2,q|A>0(x87 3:127 SR 7xD27 O)dl’w e da?

= w'*(C(:v),t) C(x))dz" - - do™?
pO/HP_ 00 (71(0, 292), 292) fxia=o(C(2)

-/ v SO eyt de? = M) = Aig(S), (99

jD:1 gx% (%J(O7 .]}']2), 'Tj2)

where the fourth equality follows from substitution of 27! = 7(¢', 272). O

Let Whq, be the class of functions w : R?? — R, i.e. (w(x,t)), for which the r—th partial derivatives

with respect to any element of the z—vector are continuous in z°, z', ... , 2, uniformly in ¢.
Lemma 13 For any function w € Waq,,
sup| B (Ko(X7) Ko(q1)w (X1, t)A1) — Ay (wAf)| = O(R"). (99)
t
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Proof: By substitution of ¢/ = ¢/(z’) and lemma [I3, the LHS in (§9) is

Sup /Ko(l"o)Ko(Cf)Aft)(WAf, %, Q)da’dq — Afy (wA f, x5,0) (100)

Lemma [l| requires Af, (wAf, -, ) € Wyyip,r for (@) to be O(h"). Let G = {q:32 € S8 :§(2) = ¢},
which is compact since S is compact. Note that TAWA (wAf,2° G) = 0 whenever (2°,§) € R% x G.
But A, (WAf, ) € Wagip, by assumption [J and the assumption that w € Wy, . O

Lemma 14 For any function w for which 0w/027* € Waq,,

) (96]]1w
sup [ E(T(X,, 1) + A ( — o), (101)

Ozl

where () = E(My| X, = 2)¥](27) = W] (27) (a(x) — a(xo)) /As.

Proof: Let
a wel Af
_ ~ 0 [OxIt
o, 1) =~ (0 1)/ ().
Then

B(Tjw(X,,1)) = (K0<X1,qu'(a{)w(Xl,t)e{Al)
/ Ko(a®, 477 (=) K (@ (27) ) (i, ) (@)A(2) f ()
= /K{) 2°,4(2))w(z,t) f(z)de = E(Ko(XY), ¢1)@0(X1,1)). (102)

By lemma [13, the RHS in ([[02) is Af,(@f) + O(h"), uniformly in ¢. Since €/(z) = 0 whenever

0_ .0 ~__
= xy,q =0,

e i ax [0 wWAS B el w
0 =% (o) =20 (e
where the first equality follows from the fact that ¢/(x) = 0 whenever z° = 20, G(z) = 0 and the

second equality from lemma [2. O

A.4 Bias

Recall the definition of F; in ([[g).

36



Lemma 15
EF, = O(h"), (103)
E(T{(u? —q)) =0("), j=1,...,D. (104)

Proof: ([[03) follows directly from lemma [I], hence I concentrate on ([04). Note that from (bG) it

follows that p/ — ¢! is a finite sum of terms v7(X;) with
V() = (B e (,50) — @y (07, 28) B (2 o1
V' (27) = (BB g (20, 27) = @ (2, 27)) W (27),
with W9 (27) one of 1,77 (x7)/87(27),1/67 (27). Assume without loss of generality (as before) that

w = w* = 1. I will establish the result for the first choice of v/, where the result for the second

possibility follows similarly. Let A(x) = E(M;|X, = x)A(x). Then it suffices to show that
E(Ko(X?, ¢ ) Ko(@) AX v (X7)) = O(h"). (105)

The LHS in ([I05) is by integration by partsf] equal to (omitting arguments)

“ . .
/ Ko Sl + Af e A a(:cﬂ
88;;1 ( aq.J >2

OxJ1

It hence suffices to show that

sup [v/(2/)] = O("),  sup

zI €SI zI €87
or alternatively that

sup |Efp (27, ) — alyp (a7, 0)] = O(W"),  sup

xieSI xieSI

aﬁj o oo’ o .
B ( it @) = 5 ap <xﬂ,:ca>> ‘ = O(h").
(106)

The first condition in ([[0€) is (62) and is hence satisfied. For the second condition in ([[0G) it is

sufficient to show that

N Ona o
sup | B9 (0) = 5740 = O

Let A*(z) = E(A1| X1 =2)f(x ) Then by integration by parts

oK . 8L o
/ e (x —t)*(t)dt — 83:31

Apply lemma [Il. OO

22Gimilar to the first few steps in lemma @
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A.5 Asymptotic Normality

I now derive the limiting distribution of p,' times the sum of (B3) and (B4). Let for i = 1,... ,n,
u=0,1,

Utj *Kj)‘j Aift<Y ago)» Wi

tiu

= T]\D] Gg()z( a?u)? (107)

such that the sum of (B3) and (B4) is
! Z (F EF + ZW (3] - u;z-‘))

t=1 ]1

where iy, = 1.7, Since ([L0§) is an i.i.d. sum of random variables, to establish the asymptotic

variance, I look at the variances and covariances of the summands in ([[0§).

Lemma 16
VF1 — Fado+thdova(] + O(hfdofD).
Proof: Recall from lemma [[§ that EF; = o(h"). I hence need to show that
EF} = B(KJ(X], @) M{AY) = x©FPR= %PV 4 o(h= %= P). (109)

Note that K2 = h=2(do+DP)f2 — p=2(do+D) gdo+Dpx — p=do=Ddo+D [+ with k* = k/k%*+P a second

order kernel (i.e. for this kernel » = 2). I then need to show that

E(K3(XY, @) MPAY) = Ay(0?A) /A2 + o(1). (110)
The LHS in ([[1I0) equals

E(K§ (XY, @)w(X1)As), (111)

where w(z) = (02(1') + (a(z) — a(xo))2>A(x)/Af, since My = (Y1 — a(xp))/As by definition. By
lemmas [ and [[3, (L) is

Ad(w) + O(h*) = Ay(0*A) /AL + 0(1),

because a(x) = a(xg) whenever 2° = 9, g(2) = g(z). O
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Let E; denote expectation treating X;,Y; as constant.

Lemma 17
E(B\Wi,, —UD?=0(h*%), j=1,...,D;u=0,2

Proof: I show the result for « = 2, which involves one more step than v = 0. Let v/}, = a/,fJ,.

Note that

le22 = TJ‘HzGiw(YI a12) K{OA{O (qu’Z2A{2ff2(m - aiz))

:K{OA{O((TJ‘I’Zz)\Jmfﬁ_ .f1)Y1 (Tg\PZQA{ZVlQ Ail/l)) (112)
+ K{oMo (Al Y1 — ALy). (113)

Note first that since a(z) = a?(z77,27) for all & for which g7 (27) = ¢°(x]), Al,, = a,Al,; and
hence ([L13) is U7. But since
E(T3WLN (v, X3) (e, X]) —

@) =0,
E(TWLN (a7, X3/ (277, X3) — B

Ay

AZV('% ]>) = O<hT)7

uniformly in 277 by lemma [[4, the squared expectation of ([12) is
E(K{oAioEI«Tg%A{Q fly = A1 — (TN, — Aim)) _ o),

by lemma B. O

Lemma 18 For any 7,7  =1,...,D, u,u* =0, 2,

| ) o(1), £
Cov(Es Wi, E\Wi ) = (1) 177 (114)

h=BESVI +o(npy), j=j"

Proof: By lemmas [17 and [, E(WY,,) = EU{ + O(h") = O(h"). Therefore,
Cov(Ey Wiy, EsWiy,.) = E(E\ Wiy, E1Wis,.) + O(h*). But

< |B(EWh, - U)(EWE,. — UD) | + [ (W, — U7)| + | BB, - vDUT)]

= O(h* %) + O(h"%) = O(h"~%) = o(1),
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by assumption [G, which follows from the Schwarz inequality, lemma [[7 and the fact that
E(U?)? = O(h~%) by lemma [. Finally, for j* # j, E(UiU7") = O(1) by lemma [] and

BUY) = B((KiModlp) (Vi = afo)?) = B((KdoMoAL)*(0F + (m —alo)’) ) = b sV + 00 ),

by lemma fl. But h?>~% = o(h=%m) = o(np?) by assumption [G. O

Lemma 19 Foranyj=1,...,D, u=0,2,
Cov(F1, ExWy,) = o(np;).
Proof: First, since the means of the quantities whose covariance is taken are O(h") by lemma [[3,
Cov(Fy, EyWiy,) = E(FyWi,,) + O(h™). (115)
With U7 as defined in ([L07), the first term on the RHS in ([L13) is
E(Fl(Elwleu - U{)) + E(RUY). (116)

Lemmas [[7 and [[f together with the Schwarz inequality imply that the first term in ([[16) is
O(hr=(dotD+d;)/2) — o(h=dm) = o(np?). The absolute value of the second term in ([[16) is

‘E<K0(X1aQ1)A Mleo)\]loAJ (Y1 — alo))‘

< Ch'E

KoY, 677, XM MNAL (Y — aly)| = O(h™!) = o(ngd),

for some C' < oo by lemma B since Ky(¢’) is bounded by Ch™! for some fixed C' < oo by

assumption [F. O

Lemma 20 Let M]I‘iml‘]fu be as defined earlier in this appendix. Then, for u = 0,1,

n 712 ( (Fi— EFy) + ZTW.Z Qi — u%)) 5 N(0, V). (117)

Proof: I show the result for u = 7; showing the results for u = 0,7 simultaneously only

complicates notation. The LHS in ([[17) is by (L07) equal to

~In 222(@ EFy) +Z i Ewgu)>, (118)

t=1 i=1 7j=1
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which is a V—statistic with asymmetric kernel. In line with lemma B, denote the expression in large

brackets in ([1§) by (;; and set ¢, = p,. Clearly, F;(; = 0 a.s. and hence E(jo = 0. By lemma P,

ElF| = 0(1),
E|W1jn| = E|Tf\I’Z1Kf0A{0A1f1(3/1 —ay)|
< Clh_zE‘K?OKfoOYﬂ + 1)| - O(h_2)7

for some C} > 0 because |K'| = h™2|k'| and |k'| is bounded. Hence

E|C11| = O(h™2) = o(n'/2h=%) = o(np,). Further, by (109) and again by lemma [,

EF = O(h="""),

E(lem)z = E(TZJ\IJJO2K{O)‘]10/\{2(.]C{2§/1 - V{ ))
< CoE(TY)*B(K{gNo(|Y1] + 1))2 = O(h™ %= P=HO(h%) = O(h~%~P—3-ds),

for some Cy < oo. Hence E(%, = O(h~%~P=374) = O(h=2Im=3) = o(nh=%) = o(n?p?) by
assumption [G. Hence lemma B implies that
prtn? Z Z Cio = poin ! Z Ei(ie + o(1).
t=1 i=1 t=1

All that remains to be done is to establish the limiting variance. Now, E(El(gm))z is
E(C21C31) =VFH

D
+ Z COV(Fl, E1W{22)

=1

D

Jj=1

D D
+ Z Z Cov(E1WHay, E1Wiy,).

=1 j*#j

(119)

(120)

(121)

(122)

By lemma [16, ([[19) is h=%~Px0+PY0 4 o(np?). Lemma I implies that ([120) is o(np?). Finally,

lemma @ establishes that ([122) is o(np?) and that () is Z]D:l h=%k%VI+ o(np?). O

A.6 Negligble Terms

Lemma 1] establishes that (B5) is asymptotically negligble, lemma P9 does so for (Bf) and lemma

23 for (B7).
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Lemma 21 Let Nf'uo = Ei‘ﬂnoy N?m = Ei‘ﬁm- Then for u = 0,1,

nil ZT]\IIOZ qAIIzu Ni’[@u) = Op(pn>‘ (123)

Proof: I show the result for u = 0 where the result for u = 7 follows similarly. Let
Y = No(fY: — vl) and choose (; = TV W), (KN, Y — Ei(KJ M, Y,)) in lemma [}, such that the
LHS in ([23) is n™2> " > | G- Clearly, ECi2 = 0. The procedure to establish that
E|(11| = o(np,) and ECZ, = o(n?p?) is essentially the same as in lemma P{ and is not repeated
here. T now show that E((21(31) = o(np?), which is sufficient for (123). Note that

E(GrGn) = E(Ein)* < E(T1Ey(T{ W, K,N,))" = E(TITIQ(X3, X7)), (124)
with (setting T*(z) = E(T|X; = x)),

Qa,47) = 1($])K1($j)T2V(X T )N (X7, 7))

K
/ K@ — 2K (¥ — @) 0 @)V (@7, 29) N (27,4 dz

J_ , o . S o .
= h b /k(u)k (I - x > Y9 (E 9, 5+ ha)N (77, 0N (779, 7)dz du,

where the last equality follows with the substitution of u = (z7 — #7)/h. Let
Q(z) = BE(A1 M| X, = z) f(x). Since A is bounded and sup,; [ T* (277, 27)dz™7 < oo by
assumption D, the RHS in ([[24) is bounded by some constant times

o J_ vI
E (Tngk (L - X3 + u>) ‘

Xj . Xj
E (KO(XQ,qQ VEKo(X9, 45 K@) KL (G) Ay As My Mk (%4-’&))‘

h~% sup

u

=h % sup

/ Ko (2%, 7 (277)) Ko (2%, 477 (7)) Ko (7 (7)) Ko (¢ (7))

= h~% sup

x (xj - i +u) Q(2)Q(i)dwdi

2, g (27)) Ko (2°, 77 (279)) Ko (¢ (7)) K (q*f (# + h(u+ m))

X k(v)Q(z)Q’ (277,27 + h(u + v))dwdi’jdv),

< sup ‘KO i, ¢ (27)) K| (q (z/ +h(u+v))>k(v)

X Sup di~7dv (125)

/KO 2,77 (z77)) Ky (¢ (27)) Q) QY (277, 27 + h(u + v))dx
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by substitution of v = (27 — #7)/h + u. The inner supremand is O(1), uniformly in u,v. Thus,

(1239) is
0(1) Slip/ ’K() (2°, ¢ («7)) K} (cjj (&7 + h(u+ v)))k(v)’ didv = O(h™) = o(h™) = o(np?),

by lemma B. O

Lemma 22
_1ZT] E(T](u1 —q‘)):op(pn), j=1,...,D.

Proof: In the proof of lemma [LF, I showed that sup,;.g; |1 (z7) — ¢/(27)| = O(h"). By the

Schwarz inequality and lemma B,

BT = a))* < E(Ko(X. 07 Ky (@) M) sup (A(w) (1) — ¢'(27)))

= O(h= %= P=)O(h?") = O(h*~"~3) = o(p,). O
Lemma 23

n-lzThp,H Yy =o0,(pn), j=1,...,D. (126)

Proof: Choose ¢, = T} W, 7l (G, — E;Gly; + Gy — EiGl,) in lemma [, such that the LHS in

.ZZ

([26) is n=2> "7, >, i Using the same steps as in the proof of lemma R0, it can be shown that
E|¢11| = 0p(np,) and EC(E, = 0,(n?p?). Here I show that F((21(31) = o(py), which is sufficient
since F1(12 = 0 a.s.. Note that

S : N2 S . N\ 2
E(Gaor) < 2B (B (TImh(Glog — FaGlon)) /64) + 2B ( Ea (T (Gl — BoGlan) /83) ) - (127)
I show that the first RHS term in ([[27) is o(np?), where the second term follows similarly. Thus,
E<E1 (Tgﬂg‘PZ2(G{02 - E2G{02))> = VE(T]Vi,mGig,) < E(El (T]\I’]272G]102>)
= B(K{XoBy(T)WlmiNa ) ) = o(h? =),

since the inner expectation is o(h") a.s. by lemma [[4. O
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A.7 Proof of Theorem 1

Consider the expansion of age(zo) — a(xg) in (B3)—(Bg). Lemmas RT3 establish that (85)—(B7) are

0p(pn). In lemma [[5 I showed that the asymptotic bias is O(h"), which is o(p,) if £ = 0 and O(p,,),

otherwise by the definition of . By lemma R0, p,* times the sum of (83) and (B4) has a limiting
N(0, V,)—distribution. O

A.8 Lemmas for Theorem 2

Lemma P4 is an auxiliary result, which is used in the remaining lemmas.

Lemma 24 For any sequence of functions {&;} for which sup, |&;(x)| has moments greater than

one and for any 3 =1,...,D,

supn” Z\Ko G VKo (d]) — Ko(q, ) Ko (@) & (2) As| = Op(pah™?logn) = 0,(1),

Proof: The proof is close to that of lemma B and the steps below are essentially a shorter

repetition of lemma . To understand the steps below it is helpful to read lemma [ first. I will

show that
supn” Z\Ko G Ky(@) — Kolg, ) (a)&(@)A| = Oy(pah?logn),  (128)
supn” Z\Ko @) Ki(a]) = Kol@ ) K4(@))(a)Ai| = Oplpuhlogm),  (129)

First, ([29) follows from ([(4). Now ([2§). Let ¢, ¢c be defined as in lemma B and let ¢* be ¢ except
that ¢; = ¢; — 1. Applying the mean value theorem, like in ([71)), the LHS in ([2§) is

sup Z Z KO(XU H < Azj' _qz ) > H <(Ké§j*)(qu*))1—%j* (KSQ)(-))L‘”>

® 2§|§‘§<I> =1 j*=1

. (130)

where (-) denotes some quantity between qf and (}f . Following the same steps as in lemma E after

(1) and using the same notation, the LHS in (L[30) is

(wlc —1p,=lsl=le] supn Z

=1

KO XO 51 A H *))I—ng*

gr=1

) = O, (wy I hT kIl (131)
Note that since ® > 3 and |¢| = 1 only if |¢| =

%If\*lhfldf\bcl — O(wnh% + wnh—z)@flhqu)_

But ¥,h~2 = p,h~?logn = O(n~/2h4/2=2]ogn) = o(1) by assumption [d. O
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Let P/ (z) = Ko(X?,q,7)K})(q)) AN (x77, X]). Then lemma R4 implies that
sgplpf(fc) — Pl(@)|=0,(1), j=1,...,D.

Let for w = f,v,
Ry (2) = BT W, (V- ) (0™, X7)).

with P7 as defined in (8).

Lemma 25 Let w be one of f,v. Then

ZR (@)

Proof: Recall that M; = (Y; — ag)/A,. I establish ([34) in two steps:

sup = 0,(1).

n

- . Y, —a(xg) .., j j (=9 X7

12 : j j ot 0) i (I XJ J J T, X
s‘;P " —1 <P (x )\I"t A, (x ) = B (2) W M (a7, t))
sup g P! ()W, My’ (277, X7) — E(ng’]ﬁ()\j ‘Wj)(f_jvxf))

First ([35). Since

e T e It — dge\Lo) _ a($0) - &5.(:B0)
A. AO AO A.7 A. A. 7

sup n_lz< g(x)llfit%(mo)(fu](xﬂ,)(f) — Ptj(x)\lfﬁtMth(x_],th)>'

B ()G Yt—G(CCo)

IN

t=1 o

nlth<P( )\I/jtwj(w J XJ) PJ( )\Iljtwj(x J Xj))‘

t=1

45

<ﬂW>ﬁw%MMWJM‘

S (P @) (@, XT) = P @) W () XJD‘

(132)

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)



By lemma [, ([3§) is of lesser order than ([[37). Expressions ([[39) and ([[40) are also 0,(1), which
I now show. Let M be one of M;, 1, Then

ZM* (P (2) 3,67 (279, X7) — PJ(2) Wl (7 Xﬂ))) (141)
n~! Z M; (B () = P} (2)) (& (277, X]) W2, — o (a7, X])W3,) (142)
+supn”! i‘M; (P (x) — P (x)) Wl (z 77, X7) (143)
ZM*PJ 2 X)W, — Wi (a7 X)) W) | (144)

(T22) is bounded by
s Y () = P ) sy 904, X0) = (o 50 (115)

which is 0,(n~/2h=%?10ogn), because the first factor in ([[4) is 0,(1) by (132) and because the
second factor is 0,(n"1/2h~%21ogn) since

sup, (|f(z) — f(2)| + [#(x) — v(2)]) = 0,(n"Y2h~¥?logn) by lemma 1 of Horowitz (1999).
Similarly, ([43) is 0,(1), again by ([39). Further, ([44) is bounded by

supn Z\M*P]] Sup, max ‘w] e XD, — W (277 XT) W,

=1 1,...

= O,(h ™Yo, (n Y2~ 1ogn) = 0,(n"Y2h=%?"logn) = 0,(1),

by assumption [G. Hence ([47) is o0,(1), and therefore so is ([4]). So ([37) holds.
Now ([36). By lemma 1 of Horowitz (1999), (L36) is

O, (sup n~ 12 \/E(Pf(x)\llelej (=7, X{'))2 log n) :
But

sup B( P} (z)W] Myw (77, X1))* = sup B(TY ()W, (N - ) (27, X7))?
= O(h~%=P=2) = O(h~m~?),

by lemma P Finally, n='h~%~2log?n = o(1) by assumption [G. O
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A.9 Proof of Theorem 2

I first show that V0 = V0 + 0,(1) and further down that Vi = Vi + o,(h%~%), j = 1,...,D.
Consider (B1)). Let ¥(x) = E(Y?|X; = z). By lemma [,

n_lng XZ7QZ AO(A) +OP(1)a
n! Z Ko(X?, G)AZY; = Ay(Aa) + 0,(1),

n! Z Ko(X0,G)A2YE = Ay(A9) + 0,(1),

~

Ae(1) = Ae(1) + 0,(1).
Further, by theorem [, a(x¢) — a(zo) = 0,(1). Therefore, by Slutsky,

n" S Ko(X0, ) A2 (Y; — i)
A2(1)
A (A?9) — 2A.(Aa)a(zo) + As(A)a?(xo) AL (A?0?) 0
- A%(l) + OP(l) = T(l) + Op(l) = Vo + OP<1)7

)A}O

because Aq(wa) = a(xg)Aq(w) for any function w since a(x) = a(xg) for any z for which g(x) =

9(xo).
I now show that VJ = Vi + 0, (h%~%m). Let ¢/, = Ko(X;)N (X, 7, 2))Rs(X7) (Vi — o/ (X; 7, X7)).
From ([33) it then follows that

Ko(Xi)N (X7, xé)(}/iR?(Xi) — R)(X))) = Ei(f;.
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Therefore, by (B2),

it D] —

< w DRt YT K2 (N (X 7))

x (n—léé((éﬁ<xx>—fﬁ«xw)yz—(f%x)g>—-Ric¥»))>2 (146)
+ kYRt zn: K2(X)) (W (X7, 23))?

x |n~! tz:((zizg;t(m — Rj(X))Yi — (RL(X:) — Ri(Xﬂ))‘

x |n7! ti;(Ri;(X,;)Yi — R,{(Xi))| (147)
-+/f-%ff“n(n-ljfj<ﬁzg@>2——zfcﬂbca>2) (148)
+ b = (E(E;:;{Q)z — ARV (149)

By lemmas P§ and B, ([46) and ([47) are both o0,(1). Squaring ([4§) and taking expectations
implies that the following is a sufficient condition for ([4§) to be o,(1).

Wi B(Bs(l)' = o(n). (150)

But by lemma P, the LHS in ([150) is O(h2dm—3o+D)=4) — O(h=4m=4) = o(n) by assumption [G.

Finally, (T49) is o(1) by lemma [[8.
The result for when \ is replaced with X / f follows similarly. O

A.10 Identification
Lemma 26
3zt — g} (at) = Oy (n 2 h). (151

3 . . . A A - A | 1 1 1 .
Proof: To s1mpthy notation, let © = 90y @ = 9y and let { =g (2),§ = g'(2'). Then () is
equivalent to &~ (§) — w™ (&) = O,(n"/2h~%). Note that
£—¢&=g'(a") — g'(z") = O, (n~"/2h~%), which follows, with minor adjustments for the fact that
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no uniform convergence is required here, from lemma . Then by the continuous differentiability of

w and by the assumption that w’ is bounded away from zero, the mean value theorem implies that

- 5‘ = 0, (n?h™"). (152)

~

It now remains to be shown that &~ (€) — w(€) converges at the same rate. Let

Ro = max(w(0),®(0)) and Ny = min(w(1),&(1)). Then

&7 (&) —w O] = 07 () —w T @I (€ € [Ro, W) (153)
+ 167 (€) =W O (€ € [W(0), X)) (154)
+167(€) —w MO (€ € (R, w(1)]), (155)

First (I53). By construction of &~, some s* exists for which &(s*) = ¢ and such that

@~ (&(s*)) = s*. But then
d)_(g) - w_l(é) =5 —w ! (d)(s*)) =w” (w(s*)) —w ! (d)(s*))

Proceed as in ([57). Since ([[54) and ([I53) are very similar, I only deal with ([[54). So
w(0) < € < &(0). Then

~

&™) —w MO = T E)] < wTH@(0) = wTH(&(0) — W (w(0)).

Proceed again as in ([52). O

A.11 TIteration

Since there are only two groups, 0 and 1, in the derivation below, the superscript 2 will mean ‘square’.
The derivation uses many shortcuts, which are always repetitions of similar results derived in detail
in the proof of theorem 1.

Let §(z') = [a(x)X\*(2°)da® such that Y'(z') = g(x}) — g(«'). Let moreover gy = §(x}) and
§: = ¢(X}) and similarly for g, g. It then follows from appendix [A.7 that

)

Yi— (00— ). (156)

asy (o) — a(zo) & ar(zo) — alae) +n~" Z K'(go — gi)m

i=1
where a; is again the Nadaraya—Watson estimator with regressors X?, g; and ~ means that the

remaining terms are irrelevant. The fyo,~component in the denominator in ([[56) is the joint
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density of X?, g; and replaces A since A = 1 everywhere. Similarly,

Yi—ao -

~

sy (o) — alxo) ~ dr(ro) — a(zo) + 1" Z K'(g0 — 9:) (90 — 9o)-

i1 fxog(20: 90)

ag, and gLsX are hence asymptotically equally efficient if éo —go = £(go — go). When §0 — go ~
—(go — go), the result of section .9 applies.

Now, following steps similar to those in the proof of theorem 1,

Y_ 0
%nlz/K<l‘0— 0 90 — A)M)\ (2%)dx®

fXO( %, 90)
a(XP, 7g) 5
s ZK fXO( 1,90) )\
~no ZK/ YfXO ((X go))j‘f(go _90)7 (157)

where the last step involves the mean value theorem. The zero—order term is omitted because it
is asymptotically negligble, and the §; — g; bit in the first order term disappears because it is of a
smaller order of magnitude when averaged across 1.

By the weak law of large numbers ([57) is

~F (K/(go - gl)Y};} X ()1(1909)@)\2) (90 — 90)-

But by standard kernel derivative estimation procedures,

/ N Yi - ( 1790 2 / _ 20 — m(z°. ° f( 79) 2 20
B (Koo - g5t ) /Kgo (m(a.9) = m(a®. ") 4 )y

a ( 790)>‘2< )d‘ro
IRt
a?ﬂl(mo)
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Linear, 0 =1

Probit-Like, 0 =1

Product of Logs, 0 =1

MSE MSE99 MDAE MSE MSE99 MDAE MSE MSE99 MDAE
d n | asx G || asr a || s a G5 Q|| s a || asr a GSn Q|| Gsx a || s a
31100 || 297 | 339 | 214 | 290 || 282 | 323 ¢ | 303|098 | 257 | 224 | 394 2064 | 313 || 255 | 266 || 234 | 298
200 || 201 | 256 || 141 | 212 | 221 | 264 6909 | 227 | 078 | 185 | 210 | 238 ¢ | 239 260 | 196 || 217 | 242
4| 100 || 6648 | 547 || 304 | 489 || 350 | 450 4| 513 || 110 | 456 || 290 | 424 658 | 511 | 013 | 454 | 078 | 421
200 || 430 | 449 | 202 | 395 || 271 | 385 9901 | 417 | 101 | 364 | 293 | 358 397 | 415 006 | 362 || 052 | 356
91100 || 717 | 987 | 654 | 914 || 553 | 668 ¢ | 986 || 145 | 913 || 324 | 667 6370 | 986 || 022 | 913 | 090 | 666
200 || 581 | 984 || 518 | 910 || 480 | 668 ¢ 983 | 134 | 909 || 333 | 667 ¢ 983 | 010 | 909 || 061 | 667
Linear, o0 =2 Probit—Like, o0 = 2 Product of Logs, 0 =2
MSE MSE99 MDAE MSE MSE99 MDAE MSE MSE99 MDAE
d n | asq Q|| asx a || Gsx a QS Q|| sy a || asr a Qs a || Gsx Q|| asr a
31100 || 1219 | 1242 || 622 | 1052 || 460 | 598 ¢ | 1205 || 281 | 1019 || 314 | 583 ¢ | 1216 || 424 | 1029 || 336 | 586
200 || 678 | 931 || 415 | 761 || 363 | 484 ¢ | 902 || 177 | 734 | 260 | 470 ¢ | 915 349 | 745 | 286 | 473
4| 100 ¢ | 2079 || 789 | 1851 || 533 | 857 ¢ | 2045 || 272 | 1818 || 303 | 843 ¢ | 2043 || 160 | 1816 || 196 | 842
200 || 1773 | 1693 || 545 | 1481 || 422 | 727 ¢ | 1661 || 175 | 1450 || 272 | 713 ¢ | 1659 || 058 | 1448 || 128 | 712
9 | 100 || 2075 | 3946 || 1852 | 3653 || 896 | 1335 ¢ | 3945 || 644 | 3652 || 416 | 1336 ¢ | 3945 || 552 | 3652 || 325 | 1333
200 || 1688 | 3932 || 1478 | 3638 || 769 | 1335 ¢ | 3931 || 459 | 3637 | 346 | 1335 ¢ | 3931 || 336 | 3637 | 216 | 1335
Probit, 0 =1 Flat, 0 =1 Arctan—Power, 0 =1
MSE MSE99 MDAE MSE MSE99 MDAE MSE MSE99 MDAE
d n | asx G || asx G || s a a8 Q|| s a || asr a QS G || s a || s a
31100 | 570 | 029 | 064 | 023 || 204 | 071 7220 | 301 || 037 | 254 || 117 | 291 2056 | 348 || 244 | 295 || 205 | 318
200 || 563 | 020 || 058 | 002 || 195 | 006 775 225 020 | 183 || 085 | 234 ¢ | 273 | 254 | 222 | 185 | 260
4100 || 1060 | 047 || 024 | 040 || 100 | 071 658 | 511 | 013 | 454 || 078 | 421 3472 | 512 || 066 | 455 || 163 | 422
200 || 2457 | 037 || 016 | 030 || 080 | 064 397 | 415 | 006 | 362 | 052 | 356 2086 | 416 || 060 | 363 || 1563 | 357
91100 || 1549 | 071 || 038 | 063 || 114 | 022 6370 | 986 | 022 | 913 || 090 | 667 7966 | 986 || 092 | 913 || 154 | 667
200 || 094 | 071 | 031 | 062 || 105 | 022 ¢ | 983 | 010 | 909 || 061 | 667 4| 983 082 909 | 136 | 667
Probit, 0 =2 Flat, 0 =2 Arctan—Power, o = 2
MSE MSE99 MDAE MSE MSE99 MDAE MSE MSE99 MDAE
d n | asr Q|| asr a || Gsn a aSn Q|| asr a || asr a Qs a || asx Q|| asr a
31100 | 040 | 047 || 035 | 041 || 119 | 120 ¢ | 1202 || 212 | 1017 || 254 | 583 ¢ | 1249 || 436 | 1058 || 307 | 597
200 || 028 | 034 | 023 | 028 || 097 | 097 4| 900 || 109 | 732 | 182 | 468 ¢ | 948 || 367 | 772 | 245 | 483
4| 100 4| 078 027 | 070 | 112 | 158 ¢ | 2043 || 160 | 1816 || 196 | 842 ¢ | 2044 || 215 | 1817 | 242 | 843
200 ¢ | 061 || 020 | 054 || 096 | 132 ¢ | 1659 || 058 | 1448 || 128 | 712 ¢ | 1660 || 118 | 1449 || 187 | 713
9 | 100 ¢ 127 )| 039 | 119 || 126 | 172 ¢ | 3945 || 552 | 3652 || 325 | 1333 ¢ | 3945 || 604 | 3652 || 364 | 1334
200 || 277 | 126 | 032 | 118 || 118 | 173 ¢ | 3931 || 336 | 3637 || 216 | 1335 ¢ | 3931 || 404 | 3637 | 262 | 1334

Table 1: Simulation results. Entries were multiplied by 1,000.

description.

Models as described in the text. #=entry at least 10,000. MSE=mean
square error, MSE99=mean square error of 99% of replications, MDAE=median absolute error. Please refer to text for a precise
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Figure la: Estimator distribution at (0,0,0),
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Figure 1b: Estimator distribution at (0,1,0), |inear nodel
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Figure 1c: Estimator distribution at (-1,1,-1),
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— = Nornal density with zero nmean and sane vari ance
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Figure 1d: Estimator distribution at (1,1,1),

2.0 — density
— = Nornal density with zero nmean and sane vari ance
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